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ABSTRACT 

This study, two methodologies for detecting of oil slicks on the ocean surface are presented, based on the 

classification of images captured by the synthetic aperture radar. Grounded on these approaches, two algorithms 

were presented for the critical decision-making module of the system. The first, called LDA-MLP, combines 

classic techniques such as the linear discriminant analysis algorithm, with a multilayer perceptron neural 

network. This model does not process the image to build the predictive model, reducing processing time and is 

different from other classification methods. The second, known as DL-U-net, utilizes a more current technique, a 

neural network based on deep learning, U-net. This model performs image processing, like a filter, to eliminate 

noise and instances irrelevant to this classification. Based on the analysis of the results obtained, it is concluded 

that the methods of detecting oil slicks have good precision, LDA-MLP is simpler and has a shorter processing 

time. 

KEYWORDS: Linear Discriminant Analysis, Deep Learning, Artificial Neural Network, Oil Slick, Aquatic 

Environment Monitoring.   

I. INTRODUCTION 

Despite having been known since ancient times, petroleum exploitation and refining became significant 

only at the end of the 19th century with the production of kerosene. When kerosene was produced, the 

heavier fraction (residual until then) was discovered to be a fuel for use in boilers and heating (replacing 

coal); thus, fuel oil was generated. However, it was not until early 1912 that fuel distribution began in 

Brazil with the arrival of the Standard Oil Company [1]. 

Most reserves of oil and its derivatives are in offshore fields, which have led to drilling activities 

reaching greater depths. According to the Brazilian Statistical Yearbook of Petroleum, Natural Gas, and 

Biofuels for 2022, in 2021 the volume of oil produced worldwide increased by 1.6% compared to 2020, 

reaching 89.9 million barrels per day [2]. 

These production activities in the oil and natural gas sectors generate high economic growth in the 

country. However, these processes have major environmental impacts, such as oil spills, interference 

with water resources, and community insecurity.  
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Owing to the growth in the oil industry, several accidents have occurred worldwide, resulting in the 

release of toxic or flammable substances. These incidents have caused severe environmental damage to 

fauna and flora, as well as deaths and damage to the health of the population living near the accident 

sites. According to the 2022 Petrobras sustainability report, in Brazil, nine events involving oil and 

derivatives spills were recorded, totaling 218.03m3, a value 82% higher than the alert limit stipulated 

for the year [14]. 

Consequently, this has encouraged countries and companies to enhance their environmental regulations 

for maritime transportation, as well as the operation, monitoring, and conservation of pipelines for 

hydrocarbon transportation. These efforts involve adopting methods and techniques that are less 

aggressive to the environment. By seeking systems capable of detecting, tracking, and locating oil leaks, 

companies can act quickly and effectively to reduce environmental damage. 

The detection of oil slicks in the ocean is a critical environmental issue. When carrying out the literature 

review, several methods, tools and techniques were identified that help in monitoring and detecting 

areas affected by this type of accident, using synthetic aperture radar images. (SAR), due to its 

advantages, which are the ability to penetrate clouds and provide high-resolution images. SAR, mounted 

on aircraft or satellites, is a microwave-based technology that emits pulses of radiation toward the ocean 

surface and receives its reflection to capture a representation of the scene. This is currently the most 

used method due to its precision, fast data acquisition and large simultaneous coverage area [3]. 

Another technique that has been highlighted in this area is the wireless sensor network (WSN), which 

is a network of autonomous sensor devices that communicate over wireless channels. These networks 

consist of multiple sensor nodes (static and dynamic) with multiple sensors per node that communicate 

with each other and the base station over wireless radio links [4]. 

Various methods are proposed to detect oil slicks using SAR images [5] [15] [16] [17] and convolutional 

neural networks (CNNs) have been widely adopted. They are deep neural networks, used to classify 

images, group them by similarity and perform object recognition within a scene. The effectiveness of 

CNN in image recognition is one of the main reasons why deep learning has gained prominence. Some 

architectures used to perform this detection ResNet-101, U-net, LinkNet and DeepLabv3+ [5]. 

Dongmei Song [7] proposed a methodology that uses ANN with statistical methods for the detection of 

oil spills, using PolSAR images (polarmetric synthetic aperture radar). This model consists of a CNN 

for extracting deep features from the original data, performing dimension reduction and reducing data 

redundancies. These features are then merged through Principal Component Analysis (PCA), and the 

Support Vector Machines (SVM) are used to perform the classification. The results obtained with this 

proposed method showed good classification accuracy, with a more accurate oil spill detection, that is, 

with a low rate of false alarms. 

In reference [19] proposes a method based on linear discriminant analysis (LDA) to improve the 

performance of Global Navigation Satellite System-Reflectometry (GNSS-R) sea ice detection, in terms 

of accuracy and robustness to noise. This method showed an accuracy of 95.03% for data with low 

noise effect. However, it still proved to be more robust for data with medium and high noise effect than 

the CNN-based method. 

In view of the above, the proposal presented in this study aims to develop two methods for the detection 

and classification of oil slicks on the ocean surface. These methods are based on the integration of 

statistical techniques and artificial neural networks (ANN), whereas the theoretical foundations of the 

other methods are based on deep learning. In terms of application, the proposed algorithms are 

customized for processing satellite images for the detection and classification of oil slicks on the ocean 

surface. 

Consequently, this study seeks to contribute to the monitoring and mitigation of harmful effects caused 

to the environment by humans. Efficient monitoring and preventive alerts are necessary to combat these 
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risks and limit environmental damage. In addition, we propose a methodology for detecting exogenous 

disturbances in aquatic environments. The proposed methodology is oriented towards the development 

of methods, procedures, and algorithms for the detection/classification problem. Thus, this 

methodology can be applied to the WSN. For example, local and online port monitoring via WSNs can 

detect the presence of oil stains in a docking zone.  

Two methods for oil slick detection in an aquatic environment the paper presents, one using statistical 

methods with a neural network and the other using a neural network with deep learning. Section II 

describes the oil-slick detection system. The analysis methods and algorithm construction for the critical 

detection system are presented in Section III. A performance evaluation of the detection results and a 

ranking of the proposed methodologies are presented in Section IV. Finally, Section V concludes the 

paper. 

II. OIL STAIN DETECTION SYSTEM 

This section presents the development of a signal-processing module for anomaly detection in aquatic 

environments. The problem was investigated, and the proposed solutions were contextualized using the 

block diagram shown in Figure 1, which is a diagram of the system for oil slick detection on the ocean 

surface. The system is made up of five functional blocks: a) process, which is the subject of monitoring; 

b) disturbances, which are the agents that cause changes in the process; c) measurements, which involve 

devices or equipment responsible for acquiring information (signals); d) critical, which is the device or 

sensor node that evaluates the impact of the disturbance on the process; e) decision making, which is 

the unit responsible for planning and executing tasks based on the critic's assessments. 

 

Figure 1. Block diagram of the oil slick detection system on the ocean surface 

According to the block diagram in Figure 1, the oil detection system in a water environment incorporates 

a reference signal (a clean and spotless water environment) that provides a parametric representation of 

the value function based on the measurement data. Consequently, the proposed detection method is 

geared to be embedded into the critical detection algorithm, which is responsible for detecting 

anomalies during the process. 

The process being monitored is an aquatic medium. Oil slicks are considered process disturbances, and 

the measurements of the aquatic medium are obtained from the monitoring. To monitor the aquatic 

environment, SAR images are used because they are minimally affected by the sun and cloud rays and 

possess the ability to capture images throughout the day and in any climate with a wide range and high 

resolution [18]. 

The information from the SAR is input into the detection algorithm. The measurement signals are 

processed using methods and techniques, such as multivariate data analysis, ANN, and deep learning. 

In addition, as shown in the block diagram in Figure 1, the information flow from the critic is sent to 

the decision-making module. If oil slicks are detected on the ocean surface, these measures are applied 

by an external individual. This involves implementing an appropriate control policy to contain the slicks 

and clean up the affected aquatic environment to minimize environmental impacts. This decision is not 



International Journal of Advances in Engineering & Technology, June, 2024. 

©IJAET    ISSN: 22311963 

262                            Vol. 17, Issue 3, pp. 259-276 

 

part of the proposed detection system. 

III. ALGORITHMS FOR A CRITICAL DETECTION SYSTEM 

In this study, two methods for the detection and classification of oil slicks on the ocean surface are 

presented: LDA–MLP, which uses the integration of statistical methods, such as linear discriminant 

analysis (LDA), artificial neural networks, and multilayer perceptron (MLP). The second method is 

based on deep learning (DL-U-net) and uses the convolutional neural network in the U-net architecture. 

3.1. CRITIC’S LDA-MLP MODEL 

The LDA-MLP algorithm proposed for the detection of oil slicks on the surface of an aquatic 

environment consists of the following steps: capturing the images, estimating the class to which each 

image belongs, and classifying the input data using the estimate provided by LDA [21]. The proposed 

method does not process the image to build the predictive model. This approach helps to reduce the 

processing time. It differs from other classification methods, which first perform an entire image 

treatment, eliminate noise, and perform image segmentation. Figure 2 presents the functionality of each 

step-in block form and the trajectories of the information flow for detection using the proposed 

algorithm. 

 

Figure 2. Scheme of the LDA-MLP oil slick detection algorithm 

According to the scheme shown in Figure 2, we have the process that in this case study is the ocean 

surface, as previously mentioned in the block diagram of Figure 1, representing the aquatic 

environment. The oil slicks are considered disturbances. It is necessary to acquire images of the ocean 

surface, that is, the surface to be monitored, without first performing any processing on the image. Thus, 

the SAR images are used in their original form as received from the satellite. 

The classes are then estimated using the LDA technique, in which the classes to which the image 

belongs are calculated from the response of the Fisher discriminant function, which is added to the 

concatenated vector of the image; each vector consists of the image data plus the estimate of which 

class the image belongs to.  

The linear discriminant analysis aims to distinguish the groups (or classes) of the dependent variable 

through independent variables; that is, it intends to discover the characteristics (explanatory variables) 

that distinguish between members of different groups so that, when the characteristics of a new case 

(individual) are known, it is possible to classify which group of the dependent variable it belongs to [8]. 

The Fisher discriminant function for this two class problem is given by 

𝐷(𝑥) = 𝐿𝑥, (1) 

where x is the vector of population characteristics and L is the estimated discriminant vector for the two 

classes, which is given by 

𝐿 = (µ1 − µ2)’∑−1, (2) 

where µ1 is the class average 𝐶1, µ2 is the class average 𝐶2, and ∑ is the common covariance matrix for 

the two classes. Assuming that the covariance matrices of the classes are equal, then 
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∑ = [
(𝑛1 − 1)

(𝑛1 − 1) + (𝑛2 − 1)
] 𝑐𝑜𝑣1 + [

(𝑛2 − 1)

(𝑛1 − 1) + (𝑛2 − 1)
] 𝑐𝑜𝑣2, (3) 

where 𝑛1 is the number examples from 𝐶1, 𝑛2 is the number examples from 𝐶2, and cov is the covariance 

matrix of each class, which expresses the dispersion of the class data. It is desired that this dispersion 

be as small as possible, so that Fisher's discriminant function can minimize the probability of 

misclassification. To apply the classification rule and obtain the estimate of the classes, the midpoint 

between the means of the two populations is calculated as 

𝑚 =
1

2
(𝜇1 − 𝜇2)′∑−1(𝜇1 − 𝜇2). (4) 

This classification rule states that if 𝐷(𝑥) is greater than 𝑚, image examples 𝑥 belongs to class 𝐶1; 

otherwise, examples image 𝑥 belongs to class 𝐶2. Then, classification is performed using the MLP 

neural network, which separates the images into two groups: surfaces with oil slicks and clean surfaces 

(without oil slicks). 

The MLP consists of an input layer that receives the data to be processed by the network and hidden (or 

intermediate) layer(s). In this study, there is only one hidden layer. Finally, there is the output layer that 

returns the answer. The number of neurons in this layer is related to the task that the network is 

performing [9]. The algorithm used for training is backpropagation, which is based on error-correction 

learning heuristics, in which the error is backpropagated from the output layer to the intermediate layers 

of the network. This algorithm operates in two steps: the forward phase, which calculates the synaptic 

weights of the neurons based on the input layer data to produce the response in the output layer, and the 

backward phase, in which the output is compared with the desired output. If there is an error, it is 

propagated from the output layer to the input layer, and the weights of the intermediate layer neurons 

are modified as the error is backpropagated [9].  

The training process of the MLP is the same as that of a single-layer perceptron, in which the output of 

layer one is input to layer two, and so on, until the output layer of the neural network is reached. The 

difference between the desired value and output of the network indicates the error made by the network 

for the input data, which is used in the backward phase to adjust the synaptic weights of the network. 

All these steps of class estimation with classification occur in the block of the critic, as illustrated in the 

block diagram of the detection system (Figure 1). Consequently, in the context of the decision-making 

system shown in Figure 1, the main features of the functional blocks of the critical algorithm for oil 

slick detection are presented in Figure 2. 

3.2. CRITIC’S DP-U-NET MODEL 

The second algorithm, proposed for the detection of oil slicks on the surface of an aquatic environment, 

consists of a set of steps: image capture, image processing, and classification of the input data. 

Therefore, in contrast to the classification by the proposed method using the LDA-MLP approach, this 

method performs processing on the image, such as a filter and some adjustments, to eliminate noise and 

instances that are not of interest for this classification before using it to build the model of the 

convolutional classifier. For the proposed algorithm, Figure 3 shows the processing steps for oil slick 

detection on the ocean surface in the form of a flowchart, which is based on the DL-U-net algorithm. 

 

Figure 3. Scheme of the DL-U-net oil slick detection algorithm 
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According to the scheme in Figure 3, the process being monitored is the ocean surface, and the initial 

step involves acquiring images of the ocean surface. Because the SAR images obtained have a large 

dimension, the image is divided into four, and the other instances of the image are eliminated, leaving 

only what is desired to detect the oil slicks. In addition, the acquired images often contain noise, making 

it difficult to interpret them; therefore, they undergo processing to attempt to eliminate as much noise 

as possible. 

After processing the database, the images are ready to train a deep neural network using the U-net 

architecture. After the training is performed, a test is conducted to analyze the efficiency of the trained 

classifier. These image processing and classification steps are represented in the block diagram of 

Figure 1 by the critic block. 

With deep learning, it is simpler for an algorithm to perform tasks that were previously extremely 

difficult, such as recognizing objects in an image. Convolutional neural networks (CNN) are responsible 

for bringing deep learning to the forefront because they have proven to be efficient in accurately 

classifying pixels [10]. 

Other deep networks have been developed from CNN, such as U-net [11] and DeepLabv3+ [5], and 

have been applied to image classification and segmentation. The U-net network is a fully convolutional 

network, which has the characteristic of being faster because it avoids the use of denser layers and many 

parameters, allowing its use for any image size. In this network, there is an initial sampling reduction 

because a convolutional filter is applied that contracts the image at different resolutions and filters, and 

detects different structures and textures. In the second stage, a resolution increase is performed, making 

interconnections between images and equivalent scales, and generating better image quality [12]. 

IV. DETECTION AND CLASSIFICATION RESULTS 

To evaluate the performance of the proposed detection methodology, images from the Oil Spill 

Detection Dataset (MKLab) were used. The database consisted of SAR images. A description of the 

experiments and analysis of the results of the two proposed methods for detecting oil slicks in the ocean 

are presented in this section. The first algorithm integrates statistical methods and an artificial neural 

network, namely the LDA-MLP classifier. The second method originates from deep learning (DL), 

which is the DL-U-net classifier. By implementing these algorithms, a software/code product was 

obtained to detect oil slicks on the ocean surface. Both classifiers are designed to compose the software 

core of the critic module, as shown in Figure 1. 

4.1. DATABASE 

The database used was the Oil Spill Detection Dataset (MKLab), which contains 1.112 images depicting 

instances of five classes, including oil spill, look-alike (which looks like an oil slick but is not), land, 

ships, and marine areas [5]. These images were acquired through the European SENTINEL-1 satellite 

mission, which is applied for land and ocean monitoring, equipped with the SAR radar sensor, which 

is an active system, can capture images all day long, and does not suffer from fog or dust. It operates in 

the c band, that is, it uses a frequency spectrum between 4 and 8 GHz to communicate, this 

communication band is preferred, as it allows information to continue to travel even under adverse 

weather conditions [20]. 

 The ground range coverage of the SAR sensor used in the SENTINEL-1 mission was approximately 

250km with a pixel spacing of 10×10m. This radar system covers large areas of interest and captures 

relatively small instances. The polarization of the employed system is dual, that is, transmitted vertical 

polarization - received vertical polarization (VV) and transmitted vertical polarization - received 

horizontal polarization (VH). Consequently, this radar can transmit in vertical polarization and receive 

in both vertical and horizontal polarization, which allows different types of targets to be obtained.  

The SAR imagens of this database were captured in the period from September 28, 2015, to October 

31, 2017. Information on the geographic coordinates, date, and time of the pollution events was 

provided by the European Maritime Safety Agency (EMSA) through the CleanSeaNet service. To build 

the database, only the raw VV band data were processed, following a series of preprocessing steps to 
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extract common visualizations, as it is a specialized database for oil spill detection [5]. The captured 

images were resized to 1250×650 pixels.  

The database also contains image masks that depict the instances present in the image, such as oil slicks 

and ships, using different colors to represent each of the five classes. Figure 4 shows the SAR image 

and its corresponding mask. 

 
Figure 4. Database images: SAR image, mask 

The black spots in the SAR image that cover large areas of the images are usually related to look-alikes 

(which resemble oil slicks) as opposed to the dark, elongated spots that are oil spills, as shown in Figure 

4; however, this is not always the case. Consequently, the detection of an oil slick is a significant 

challenge because the shape of the oil slick is ambiguous. 

In the mask shown in Figure 4, green represents land, black represents the ocean surface, brown 

represents ships, red represents sailfish, and cyan represents oil slick. These masks are important for 

the training and evaluation of nets used to detect oil slicks. 

When building a classifier, and test set is used to validate the classifier, the training set is previously 

known and used to extract knowledge and build the classifier model [13]. In this study, the database 

was divided into 1002 images for training and 110 images for testing. In total, there were 879 images 

with oil slicks on the ocean surface, which amounted to 79.05% of all data, and 233 clean images 

without oil slicks, which amounted to 20.95% of the entire database. 

These SAR images are significantly affected by speckle noise, which is a multiplicative noise 

proportional to the intensity of the received signal. Its visual effect is a grainy texture that can make it 

difficult to interpret the images. Therefore, many researchers perform image processing to improve the 

image quality before using them to obtain the predicted model. These processing techniques aim to 

eliminate noise, emphasize edges, and smooth the image. Another technique widely used by researchers 

is segmentation because it divides images into regions, which helps in classification. However, this 

study presents both scenarios: tests performed without any preprocessing of the images and tests 

performed with preprocessing of the database. 

4.2. Statistical Analysis 

Before applying any technique to process the information in the database, it is necessary to perform 

data analysis, because this analysis provides information about the behavior of the classes, indicating 

whether it is possible to separate the two classes. The data of the classes were analyzed in terms of their 

distribution and variance. 

To analyze the distribution of images and determine whether there is a similarity in the distribution of 

the two groups, it is of utmost importance to predict whether the two groups are separable. For this 

analysis, one image from each group was randomly selected, and their histograms were plotted, as 

shown in Figure 5. The x-axis represents the pixel value, which ranges from 0 to 255, and the y-axis 

represents the frequency of the pixel value that appears in that image. 



International Journal of Advances in Engineering & Technology, June, 2024. 

©IJAET    ISSN: 22311963 

266                            Vol. 17, Issue 3, pp. 259-276 

 

  

(a) (b) 

Figure 5. Histograms of the SAR images: (a) images without oil stains, (b) imagens with oil stains 

According to Figure 5, the histogram of the image without oil slick on the ocean surface has its peak is 

closer to 150 and more pixels are closer to white. The histogram of the image with oil slick has its peak 

is close to 100, indicating that there are more pixels in the darker color closer to the black color. 

Consequently, there was a difference in the distributions of the two groups. In addition, the histograms 

show the characteristics of a normal distribution, which is the reference distribution for the statistical 

methods used in this study. 

The second analysis performed on the data was the homoscedasticity analysis to check the variances. 

Similar to the normality analysis, a graphical analysis was performed using the box plot, which provided 

information about the location, dispersion, asymmetry, tail length, and outliers of the data set. 

Specifically, the average of each class was calculated, with the training database, then the box plot was 

then plotted for the two groups, to analyze the variance between groups, as shown in Figure 6. 

 
Figure 6. Boxplot of the two groups 

In Figure 6, there is the x-axis representing the classes; the group with oil stain, and the group without 

oil stain. On the y-axis we have the magnitudes of the pixels of the images. When analyzing the graph, 

it is observed that the notches of the two boxes do not overlap, which indicates that the median pixels 

of the images with oil stain and without oil stain are significantly different. Additionally, the median 

(red line in the box) of the group of images with spots is not centered, it has a value of 132.13, which 

indicates that each sample is slightly skewed. The group without oil spill has its median centralized, 

assuming a value of 122.65, but it presents outliers, while the other group does not have any outliers. 

These outliers are due to the members who are also shown with dark spots in the SAR image, hence the 

difficulty in detecting oil stains correctly. 
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4.3. LDA-MLP Model Design 

As mentioned above, the LDA–MLP model has three steps: the acquisition of the images, the estimation 

of the classes by the LDA technique, and the classification through the MLP network, which has the 

concatenated vector of the images plus the LDA estimate as input. The outputs of the classifier were 0 

(clean ocean surface) and 1 (oil-slick ocean surface), and these values were compared with the desired 

output to verify the efficiency of the model. 

The algorithm for image classification of a clean or oil slick ocean environment developed for this 

ocean surface oil slick detection system is divided into two: the LDA and MLP algorithms. The first 

algorithm reads images from the training database and uses the average of each class to calculate the 

covariance matrices of the classes and common covariance matrix. Using these matrices, a discriminant 

function is built to arrive at the classification step, and its code is exposed to Algorithm 1 - LDA. 

ALGORITHM 1 - LDA 

  Startup 

1 𝑅𝑒𝑎𝑑 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒𝑠; 
2 𝑅𝑒𝑠𝑖𝑠𝑒 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒𝑠; 

  LDA 

   Average of each class 

3  

𝜇𝑗 ←
1

𝑛𝑗
∗ ∑ 𝑥𝑖𝑗

𝑛𝑗

𝑗=1

; 

   Covariance matrix 

4  𝜙𝑗 ← 𝐼𝑗 − 𝜇𝑗; 

5  
𝑐𝑜𝑣𝑗 ←

𝜙𝑗 ∗ 𝜙𝑗
′

𝑛𝑗 − 1
; 

6  
∑ ←

1

(𝑛1 − 1) + (𝑛2 − 1)
∗ ∑(𝑛𝑗 − 1) ∗ 𝑐𝑜𝑣𝑗

𝑐

𝑗=1

; 

   Midpoint between classes 

7  
𝑚 ←

1

2
∗ [𝜇1 − 𝜇2]′ ∗ ∑−1 ∗ [𝜇1 − 𝜇2]; 

   Discriminating vector 

8  𝐿 ← [𝜇1 − 𝜇2]′ ∗ ∑−1; 

   Discriminating function 

9  𝐷(𝑥) ← 𝐿 ∗ 𝑥; 

   Classification 

10  
{
𝐷(𝑥) ≥ 𝑚 → 𝐶1

𝐷(𝑥) < 𝑚 → 𝐶2
. 

  End of algorithm 

 

According to the LDA algorithm, the images are resized to 63×33 to minimize the computational effort. 

𝜇𝑗 is the mean of class 𝑗, 𝑥𝑖𝑗 are the samples of class 𝑗, 𝑛𝑗 is the number of samples of class 𝑗, 𝑐 is the 

number of classes, 𝑐𝑜𝑣𝑗 is the covariance matrix of class 𝑗, and 𝛴 is the common covariance matrix 

between the classes. 𝐿 is the discriminant vector consisting of the parameters of the function. These 

parameters generate a better separation between the classes. 𝐷 denotes the Fisher discriminant function, 

𝑥 is the test data, which contains both oil slick and clean ocean surface images, and 𝑚 is the midpoint 

used in Fisher classification.  

After applying LDA, two data points are used to perform the analysis: the first analysis uses the class 

estimate, and the second analysis uses the response of the discriminant function. This information is 

added separately to the hues of the input images. Therefore, the new image vector becomes 2080×1 in 

dimensions as an additional piece of information is added, which is the image class estimate or 

discriminant function response. 

The algorithm for oil slick detection using the multilayer perceptron neural network consists of three 

steps: the acquisition of the aquatic environment that is being monitored (SAR images), the training, 

which is the part of the algorithm in which the weights are adjusted so that the classifier is as close as 
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possible to the ideal, and the test to verify the efficiency of the classifier. These steps are presented in 

Algorithm 2 - MLP. 

ALGORITHM 2 - MLP 

  Startup 

1 
2 
3 
4 

𝐿𝑜𝑎𝑑 𝑑𝑎𝑡𝑎; 
𝑅𝑒𝑎𝑑(𝑑𝑎𝑡𝑎); 
𝑋𝑇𝑟𝑎𝑖𝑛1

(𝑖, : ) ← 𝑑𝑎𝑡𝑎(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) ∪ 𝐷(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔); 

𝑋𝑇𝑟𝑎𝑖𝑛2
(𝑖, : ) ← 𝑑𝑎𝑡𝑎(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) ∪ 𝐶(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔); 

5 
6 
7 
8 
 
9 

𝑋𝑇𝑒𝑠𝑡1
(𝑖, : )  ←  𝑑𝑎𝑡𝑎(𝑡𝑒𝑠𝑡) ∪ 𝐷(𝑡𝑒𝑠𝑡); 

𝑋𝑇𝑒𝑠𝑡2
(𝑖, : )  ←  𝑑𝑎𝑡𝑎(𝑡𝑒𝑠𝑡) ∪ 𝐶(𝑡𝑒𝑠𝑡); 

𝑑𝑇𝑟𝑎𝑖𝑛 ← 𝑐𝑙𝑎𝑠𝑠𝑒𝑠; 
𝑑𝑇𝑒𝑠𝑡 ← 𝑐𝑙𝑎𝑠𝑠𝑒𝑠; 

𝑊 ← [
0
⋮
0

]

(𝑙+1)×1

; 

𝑒𝑝𝑜𝑐ℎ = 𝑖𝑛𝑡; 10 

  Iterative Process 

   Weighted Sun 

 
11 

 
𝑌𝑡 ← ∑ 𝑊 ∗ 𝑋𝑇𝑟𝑎𝑖𝑛𝑡

(𝑖, : );

𝐾

𝑖=1

 

    Activation Function 

12  𝑅𝑡 ← 𝑅𝑒𝐿𝑈(𝑌𝑡); 

    Weight Update 

13   𝐼𝐹 𝑑𝑇𝑟𝑎𝑖𝑛  ≠ 𝑌𝑡 𝑇𝐻𝐸𝑁 
14   ∆𝑊𝑡 ← 𝜂 ∗ (𝑑𝑇𝑟𝑎𝑖𝑛(𝑖) − 𝑌𝑡(𝑖)) ∗ 𝑋𝑇𝑟𝑎𝑖𝑛𝑡

(𝑖, : ); 

𝑊𝑡 ← 𝑊𝑡 + ∆𝑊𝑡; 15  

    End Loop 

   Iterative Process - Test 

    Weighted Sun 

16 
 

𝑢𝑡 ← ∑ 𝑊𝑡 ∗ 𝑋𝑇𝑒𝑠𝑡𝑡
(𝑖, : );

𝐾

𝑖=1

 

   Activation Function 

17  𝐼𝐹 𝑢𝑡 < 0 𝑇𝐻𝐸𝑁  

     𝑅𝐸𝑆 ← 0; 

𝐼𝐹 𝑢𝑡 > 0 𝑇𝐻𝐸𝑁 

     𝑅𝐸𝑆 ← 1; 

18 

19 

20 

  End Loop 

   End of Algorithm 

 

According to the MLP algorithm, the variable data is the database with the 1112 images. 𝑋𝑇𝑟𝑎𝑖𝑛𝑡
 is the 

matrix with the training images that contains 1002 images plus the LDA information, which can be the 

estimate of the classes or the response of the discriminant function, in which each column corresponds 

to an image. 𝑑𝑇𝑟𝑎𝑖𝑛 is the vector of desired outputs, 𝑊𝑡 is the vector of synaptic weights, 𝑒𝑝𝑜𝑐ℎ is the 

number of iterations, 𝑢𝑡 is the weighted sum response, 𝑅𝑒𝑠 is the perceptron output, 𝜂 is the learning 

rate, ∆𝑊𝑡 is the difference calculated according to the classification error to update the synaptic weights, 

and 𝑋𝑇𝑒𝑠𝑡𝑡
  is the matrix with the images and the LDA information for testing the classifier. 

4.4. Result from the LDA-MLP Model 

When receiving the database, the only operation performed on the images was a reduction of dimension 

from 1250×650×3 to 63×33 because the image dimension was too large, leading to higher memory 

consumption and processing time of the algorithms. In addition, as the images are in grayscale, it does 

not require a three-dimensional matrix. The linear discriminant function was then calculated, using this 

training database. The calculated discriminant function had a hit of 100%, that is, it had a true positive 

rate of 100% and a false positive rate also of 100%. 
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To verify the performance of the discriminant model, experiments were conducted using a test database 

containing 110 images. These analyzes were performed based on the evaluation metrics; as accuracy 

that indicates the percentage of correctness of the predicted model, the precision that indicates the 

percentage of correctness of the positive class in relation to all data classified as positive, recall that 

indicates the percentage of success of the positive class in relation to the data that really positive, and 

the F1 metric which is a balanced harmonic mean between precision and recall [6]. The values obtained 

for these metrics are listed in Table I. Another metric analyzed is the ROC curve that presents the true 

positive rate versus the false positive rate, a way to assess the quality of the predicted model to 

distinguish between the two classes. 

According to Table I, the calculated discriminant function of the LDA shows a correct classification of 

87.50% of the images with oil slicks and 100% of the images without slicks. The ROC curve is a 

graphical technique used to evaluate the ability of the predictive model and make the proper 

classification, and the ROC curve of this predictive model is shown in Figure 7. 

 
Figure 7. ROC curve for the LDA test 

According to Figure 7, the x-axis shows the rate of false positives and the y-axis of the graph 

shows the rate of true positives, and the curve illustrates how recall (sensitivity) and specificity, 

which is the percentage of correctness of the negative class in relation to data that are actually 

negative. By observing the curve shown in Figure 7, it is concluded that the predicted LDA 

model is able to discriminate well between the two classes, as the curve is close to the upper 

left corner of the graph, and the area under the ROC curve obtained confirms this good 

classification, with an value 𝐴𝑈𝐶 = 0.9907. 

To improve the classification performance, the multilayer perceptron network was used to 

classify the database, constituted with an intermediate layer, the weight optimization algorithm 

used is Adam, the activation function used is rectified linear unit (ReLU), the batch size used 

to process the samples was 8, the number of epochs was 50, and a learning rate of 𝜂 = 1 ×
10−4. Additional information has been added to the database, specifically the Fisher's 

discriminant function response and the LDA classification. 

The test using only the multilayer perceptron network mentioned above consists of an 

intermediate layer with 2079 neurons, which are the number of parameters of the input data, 

having as input only the images, where the training database consists of 1002 images and the 

test database consists of 110 images. The results obtained for the training and testing are 

presented in Table I. 

According to Table I, the perceptron network exhibited better metric values for training than 

for testing. In addition, it is more efficient at classifying images that report oil slicks on ocean 

surfaces. The first analysis of the LDA-MLP model uses as input the concatenated vector of 

images plus the estimate of classes, for the previously specified MLP network that consists of 
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an intermediate layer with 2080 neurons, which is the number of parameters of the input data 

with the classification obtained by the LDA. The results of the training and test are listed in 

Table I. 

According to Table I, the LDA-MLP model, using class estimation, was ideal for training 

because it obtained metrics equal to 100 however, in the test, it presented better values of the 

metrics, compared with the values obtained for the separate LDA and MLP methods, correcting 

100% of the images without oil stains. 

The second analysis performed on the LDA-MLP model used the concatenated vector of the 

image plus the response of the discriminant function as input, for the previously specified MLP 

network consisting of an intermediate layer of 2080 neurons, which is the number of parameters 

of the input data with the value obtained by the linear discriminant function. The results 

obtained for training and testing are listed in Table I. 

According to Table I, the LDA-MLP model using the Fisher discriminant function response is 

satisfactory for detecting and classifying images of oil stains, misclassifying only an image 

without stain. Of the four tests carried out, it is observed that the LDA-MLP method is more 

efficient, that is, the information added from the LDA contributed to improve the training of 

the network, presenting better values for the evaluation metrics, and using the response of the 

discriminant function is most relevant to training. 

Table I. Training and testing metrics for LDA, MLP, LDA-MLP: images plus response and LDA discriminant 

function 

 MODELS 

 LDA MLP LDA-MLP 

LDA Estimation 

LDA-MLP LDA 

Discriminant Function 

METRICS Training Test Training Test Training Test Training Test 

Accuracy 

F1 

Precision 

Recall 

100.00 

100.00 

100.00 

100.00 

90.00 

93.33 

100.00 

87.50 

95.81 

97.38 

96.29 

98.48 

93,63 

96.09 

94.51 

97.73 

100.00 

100.00 

100.00 

100.00 

98.54 

96.47 

100.00 

93.18 

100.00 

100.00 

100.00 

100.00 

99.09 

99.44 

98.88 

100.00 

 

4.5. DL-U-net Model Design 

According to the diagram in Figure 3, the procedure for detecting/classifying oil slicks in the DL-U-net 

model consists of three steps: acquisition of the measurements of the aquatic environment to be 

monitored, preprocessing of the images, and classification using the U-net network. 

The grayscale SAR images have dimensions of 1250×650×3, where 1250 represents the height, 650 

represents the width, and 3 represents the depth, which is determined by the number of color channels. 

The masks also have the same dimensions but in RGB colors. Consequently, the first process is the 

division of an image into four images to reduce the image dimension to 320×608×3, in addition to 

increasing the database that started to see four times larger than the real one. In the training database, 

only the images that reported oil slicks are retained, accounting for 1651 images. 

Next, a 5×5 median filter is applied to minimize the speckle noise, that is, to suppress the grainy texture 

of the images. This filter is applied in both the training and test benches. Figure 8 illustrates the original 

image and the resulting image from the median filter. After filtering the images, a new bank, called the 

validation bank was created, containing 100 images taken from the training database. 
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(a) (b) 
Figure 8. Resized images: (a) without filter, (b) with median filter 

In the masks, the image was divided into four parts, and the RGB images were transformed into 

grayscale images. Therefore, the oil slicks are represented by pixels with a value of 178. Therefore, 

with the value of the pixel representing the oil slick, it is possible to exclude all other instances of the 

image, leaving only the oil slick and ocean surface. 

As in the image training database, only the masks corresponding to the images that reported oil slicks 

remained, accounting for 1651 masks. However, in the test database, this exclusion was not performed; 

thus, the test mask database consisted of 440 masks. 

After performing all the processing, the database is ready to train the U-net network and generate a 

classifier model that classifies the data with good accuracy. As already mentioned, the U-net network 

consists of a contraction path and an expansion path, which consists of applying the convolution block 

four times, consisting of two 3×3 convolutions each, followed by normalization and the rectified linear 

unit activation function. Another parameter that is determined in the convolution is the padding, which 

ensures that the layers do not shrink any faster than necessary for the learning of the network. For this 

network model, it was determined that the output should be the same size as the input. This convolution 

functioned as a filter that ran through the entire image and captured the most relevant features. These 

steps are shown in Figure 9, where the input image has dimensions of 320×608×3. 

 

Figure 9. DL-Unet model algorithm 

As shown in Figure 9, the DL-U-net model had 64 filters in the first convolution block, 128 in the 

second, 256 in the third, and 512 in the fourth; that is, it doubled until the last convolution block. After 

each convolution block, a pooling operation occurs to simplify the information of the previous layer. 

The method used is the max pooling of area 2×2 with step 2 to reduce the number of weights to be 

learned and avoid overfitting. After the last max pool, the input image will have dimensions of 

20×38×3. 

In the expansive path, transposed convolutions need to exist because they use a transformation going in 

the opposite direction of the normal convolution, that is, from something that has the shape of the output 

of some convolution to something that has the shape of its input, maintaining a pattern of connectivity 

compatible with that convolution. 
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Therefore, this path consisted of four convolution blocks, similar to those used in the contraction path, 

which changed the number of filters per block to 512, 256, 128, and 64, for blocks 1, 2, 3, and 4, 

respectively. However, before each convolution block, a transposed convolution was applied with the 

amount of filter equal to that of the block and dimensions of 2×2 with step 2. The output size has to be 

the same as the input. In addition to the transposed convolution, it has a concatenation layer. 

In the final layer, a 1×1 convolution is used to map each feature vector of 64 components to the desired 

number of classes, and the activation function used is the sigmoid function, which outputs an image 

with dimensions of 320×608×3, the same as the input image. Therefore, the network had a total of 23 

convolutional layers. 

According to the values presented in Table II, the DL-Unet model, with the database without a median 

filter, indicates that it can learn and precisely classify 84.74% of the test images. This model gives us, 

in addition to these evaluation metrics, a response image in which the oil slick is detected, as shown in 

Figure 10. 

 
Figure 10. DL-Unet model response, SAR image, mask and response, respectively 

According to Figure 10, first, we have the SAR image, which is the input data for classification. Next, 

we have the mask, that only reports the presence of oil slick. Finally, we observe the response of the 

DL-U-net model, which visually appears to closely resemble the mask. For this image, the network 

achieves an accuracy of 99.88%, an F1 metric of 83.68%, a precision of 75.15%, and a recall of 77.12%. 

Therefore, it proved to be efficient, even though it had some images representing stains and the surface 

had no oil stains. 

Therefore, to check whether the median filter improves the results, a second analysis was performed, 

and a database with a 5×5 median filter was used. The training of the DL-U-net network was performed 

with the Adam optimizer, a learning rate of 𝜂 = 1 × 10−4, a batch size of 8, and 50 epochs. The results 

obtained in the training had an average precision of 74.08% and an average recall of 64.8%; the test 

results are presented in Table II. 

Table II. Testing metrics for DL-U-net: images without and with median filter 

 MODELS 

 DL-U-NET 

Images without median 

filter 

DL-U-NET 

Images with median 

filter 

METRICS Test Test 

Accuracy 

F1 

Precision 

Recall 

98.64 

63.44 

84.74 

69.28 

98.94 

61.81 

72.29 

81.45 

 

According to the values presented in Table II, the DL-U-net model using a median filter was able to 

learn and classify the test images with 72.29% precision. This precision is slightly lower than the 

precision obtained for the database without applying the filter. This network provides as a response the 

metrics for evaluation and an image that reports the oil slick it detects; that is, an image that attempts to 

replicate the mask. The closer this response image gets to the mask, the better the network learns, as 

shown in Figure 11. 
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Figure 11. DL-U-net model response with median filter, SAR image, mask and response, respectively 

Figure 11 appears to have the same image as Figure 10. However, in this case, the training and testing 

were conducted using the image resulting from a 5×5 median filter. The first image represents the input 

data that is to be classified, followed by the mask, which indicates only the presence of an oil slick. 

Finally, we have the response of the DL-U-net model, which visually appears to be less accurate 

compared to the previous case. However, in terms of the existing oil slick, the model achieved an 

accuracy of 99.90%, an F1 metric of 88.51%, a precision of 91.49%, and a recall of 85.71%. This shows 

that it can more accurately detect oil slicks, representing a better response; however, it presents a 

misdetection as it detects more slicks in the image where they do not exist. 

4.6. Performance Analysis of the Classifiers 

SAR plays a crucial role in oil slick detection on water surfaces because it can provide high-resolution 

images, and the detection of these disturbances is possible. The proposed LDA-MLP method integrates 

the multivariate data analysis technique, LDA, and an artificial neural network (perceptron) to enable 

oil slick detection on the ocean surface, alerting if an oil spill is detected. The DL-U-net method uses 

the convolutional neural network with the U-net architecture; however, before training the network, 

image processing is performed by dividing the image into four images and applying a median filter to 

eliminate speckle noise, and treating the masks to leave only oil spill instances. 

When analyzing the two proposed methods, namely LDA-MLP and DL-U-net, the first method showed 

better test precision, especially in the test that uses the discriminant function response as one more 

parameter of the SAR image. Therefore, the LDA-MLP method demonstrated its efficiency and ability 

to meet expectations, even when compared with other more advanced methods. This highlights those 

classic techniques, such as LDA and MLP, are still valuable for technological development. In addition, 

its computational costs are lower compared to more advanced techniques such as DL-U-net, which is 

more advantageous when embedding this algorithm in a sensor node, for example.  

The initial results of the analysis indicated that the two proposed models provided a satisfactory estimate 

of the detection of oil slicks on the ocean surface, with precisions of 98.88% and 84.74%, respectively. 

Therefore, the use of discriminant linear analysis to classify the database and use this data as additional 

information for the database itself, which will train a multilayer perceptron network, proved to be more 

efficient in detecting oil spills on the surface from the ocean. In addition to the lower computational 

cost compared to DCNN networks. The two proposed models have been shown to have features to 

classify images, and both models can be embedded on a microprocessor for local and continuous 

monitoring of a given environment to prevent disasters to the ecosystem and the population. 

4.7. Comparison with others the Classifiers 

The work developed in [5] uses the same database, with the same division for training (90%) and testing 

(10%), and aims to detect oil stains. However, it uses six deep convolutional neural network (DCNN) 

models to perform semantic segmentation and identify oil spills on the sea surface, and then compares 

the performance of these models. The selected networks were U-net, LinkNet, PSONet, DeepLabv2, 

DeepLabv2(msc) and DeepLabv3+, where a learning rate between 5 × 10−5 to 1 × 10−4 was used, the 

algorithm of the optimization used was also Adam, the batch size used to process the samples was 12, 

and a random resizing was performed on the training database, increasing the number of images, in 

addition to rotations. Among the models, the one with the best oil spill detection was the U-net with 

53.79%, which is lower than the LDA-MLP method. In addition, the analysis of these new techniques 

reveals that they are based on classic techniques. 
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V. CONCLUSION 

In this study, methods of analysis and algorithm development for detecting disturbances in aquatic 

environments were presented. In the first instance, the proposed methodology was evaluated for oil 

slick detection on the ocean surface using theory, multivariate data analysis, and machine learning 

approaches. Specifically, MLP-type artificial neural networks and their integration with LDA statistical 

methods. 

The proposed methods were presented from their conception to the characterization and formulation of 

a specific detection problem to be solved. As part of the methodology, in this study, algorithms and 

procedures based on machine learning and multivariate data analysis were presented for the 

development of a unit of the critic module in the detection system.   

The deep learning method using the U-net network also proved to be efficient in detecting oil slicks. 

This presents the advantage of the response image, which is the projection of the slick it detects, making 

it possible to use this data to carry out other studies, such as the displacement of this slick. However, it 

has a disadvantage, which is the higher computational cost to train the network.  

The proposed LDA-MLP algorithms used simpler methods, and by integrating these two methods, a 

good result was observed for image classification. In addition, this algorithm did not perform processing 

in a database. This differs from other studies with SAR images, which, in most cases, first perform 

processing on the images; for example, a treatment to mitigate the impact of noise. The DL-U-net 

algorithm, on the other hand, differentiates the image from the detected spot, but it requires more time 

to train the network, having carried out processing on the image. 
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