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ABSTRACT 

Knowing the geotechnical characteristics of the construction site is of utmost importance for the engineer when 

designing a project, regardless it is large, medium, or small in scale. By using SPT-N values, the designer will be 

capable of determining the load-bearing capacity of the soil. Semi-empirical models have been proposed to 

calculate the load-bearing capacity in deep foundations. However, these models are developed based 

mathematical frameworks and approximations, where the calculation is not always accurate. Artificial Neural 

Networks (ANNs) are considered a mechanism capable of accurately calculating these values because they use 

more reliable variables. For this reason, the present study aims to propose the use of Multi-Layer Perceptron 

(MLP) artificial neural networks to determine the load-bearing capacity of deep foundations based on SPT-N 

 values and depth. The database compiled from a series of 68 load tests carried out in the city of Balsas-MA, for 

which SPT-N values and their respective depths were available. To evaluate the obtained results, the roots of the 

mean squared errors (RMSE) and Pearson correlation coefficients were calculated. The results indicated that the 

proposed model is can determine the load-bearing capacity with a small error rate (RMSE) and high correlation 

with the values calculated using the classical formulas from the literature 

KEYWORDS: Load-Bearing Capacity, Deep Foundations, Artificial Neural Networks & Multi-Layer 

Perceptron. 

I. INTRODUCTION 

Soils, in general, exhibit non-linear characteristics, making their behaviour under loading variable. To 

find a correlation between loading and soil, foundations were created to support the load applied by the 

construction to the ground. To determine the type of foundation, it is necessary to know the load-bearing 

capacity of the soil where the construction will take place. In this context, semi-empirical and theoretical 

methods were developed to determine this factor in Civil Construction [1]. 

According to [2], theoretical formulas often fail to achieve satisfactory results in predicting the load-

bearing capacity of pile foundations. Therefore, semi-empirical methods are used, as they are based on 

empirical correlations and in situ results, providing more accurate results. Consequently, numerous 

semi-empirical methods were developed based on load test results and tests like the Standard 

Penetration Test (SPT), which is quite common in Brazil [3]. 
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As reported by [1], semi-empirical methods were initially developed to predict settlements in sands due 

to the difficulty of testing this material in the laboratory. Subsequently, they were applied to clays and, 

finally, to soils typically used in civil construction, such as silts, clayey sands, and sandy clays. 

Thus, the use of semi-empirical methods is crucial for predicting the load-bearing capacity of a 

foundation, aiding in design and providing reliability to designers and builders, while optimizing 

execution costs [4]. It is worth noting that despite their extensive use, these methods exhibit high safety 

coefficient values, thus increasing foundation costs. 

In contrast, the use of machine learning models, particularly Artificial Neural Networks (ANNs), has 

been accepted and shown to be effective in predicting load-bearing capacity values for deep foundations 

[5]. 

In this context, this article proposes the use of MLP-type artificial neural networks to determine the 

load-bearing capacity of deep foundations based on SPT-N values and depth found in the city of Balsas-

MA. The methodology of the article was based on a database search to initiate the work. After that, the 

type of ANN to be used was chosen, as well as the mathematical operations that were utilized to design 

the algorithm. It is believed that this approach can significantly contribute to optimizing the design and 

construction processes of civil structures, ensuring greater efficiency and safety in foundations. 

II. LOAD-BEARING CAPACITY 

Foundations, in general, are responsible for transmitting the forces generated by the construction and 

are usually classified as shallow and deep foundations. According to [6], deep foundations are 

characterized as elements capable of supporting the load of the terrain and transmitting this load to the 

soil through their base and lateral surface, referred to as end-bearing resistance and skin friction, 

respectively. 

Also, according to the standard, this type of foundation must have its end or base supported at a depth 

greater than eight times its smallest dimension determined in the project and must exceed a minimum 

of 3 meters. Examples of deep foundations include piles, caissons, and drilled shaft.  

The choice of a deep foundation should consider the technical and economic conditions of the 

construction, where the following terrain characteristics must be known: origin and characteristics of 

the subsoil, load-bearing capacity to be transmitted to this foundation, limitations of the foundations 

available on the market, and proximity to neighboring constructions [7]. However, to define the type of 

foundation, it is necessary to know the load-bearing capacity of the soil where the construction will be 

done, especially for deep pile foundations [1]. 

To determine these loads, it is extremely important to carry out a preliminary and complementary 

geotechnical investigation, based on NBR 6122, where the preliminary investigation can be done 

through the Standard Penetration Test (SPT), known nationally as the Percussion Drilling Test [8]. 

According to [9], the SPT is the most widely known geotechnical investigation tool worldwide because 

it can indicate the consistency of cohesive soils and the compaction of granular soils. Furthermore, the 

test can determine the groundwater level and the nature of the soil in each penetrated layer, determining 

the penetration resistance index, known as SPT-N. 

According to [10], the SPT equipment consists of a rope, a 65kg hammer, a tripod, a guide, rods, and a 

standard sampler. The procedure with this equipment essentially involves driving the standard sampler 

into the soil, penetrating 15cm increments through the free fall of the 65kg hammer from a height of 

75cm [11]. After drilling 45cm in all layers, the 𝑁𝑆𝑃𝑇  value is determined as the sum of the number of 

blows required to reach the last 30cm that the standard sampler can penetrate [9]. 



International Journal of Advances in Engineering & Technology, June, 2024. 

©IJAET    ISSN: 22311963 

231                            Vol. 17, Issue 3, pp. 229-243 

 

Through the SPT test report, it is possible to define the type of foundation to be used in the soil, as well 

as the diameter or cross-sectional area of the shaft. Using these variables, along with the length of the 

pile in each borehole, it is possible to obtain the load-bearing capacity value that the terrain can support 

[12]. 

[13] states that the load-bearing capacity is the sum of the end-bearing and skin friction resistances of 

the studied soil, as shown in Figure 1. 

 

Figure 1. Demonstration of the resistance components for the load-bearing capacity result, [2].  

 And it can be demonstrated using equation 1. 

𝑅 = 𝑅𝐿 + 𝑅𝑃                                                               (1) 

The lateral resistance (𝑅𝐿) is the product of the perimeter and the sum of the forces obtained from the 

skin friction resistance along the entire length of the pile, equation  2. In turn, the end-bearing resistance 

(𝑅𝑃) is the product of the unit end-bearing stress and the cross-sectional area of the pile base, equation 

3. 

𝑅𝐿 = 𝑈 ∗ ∑ 𝑟𝐿 ∗ ∆𝐿                                                               (2) 

 

𝑅𝑃 = 𝑟𝑃 ∗ 𝐴𝑝                                                                       (3) 

The use of these variables, especially the use of the SPT test as a source to define this load, has been 

present from studies in Egyptian soils to soils with fine and coarse granulation [13]. However, 

calculating this load-bearing capacity, especially in deep foundations, is declared a major problem for 

geotechnics. Despite the emergence of semi-empirical models such as those by Aoki and Velloso 

(1975), Décourt and Quaresma (1978), and Teixeira (1996), the precision of the results is generally 

inaccurate. This is due to the fact that these models work based on approximations of mathematical 

models and physical assumptions [14]. 

III. ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Networks (ANNs) can be classified as a subset of machine learning. Their name and 

structure are inspired by the human brain because they are capable of processing information in a non-

linear, parallel, and highly complex manner, as well as identifying and solving patterns [15]. 
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There are different types of artificial neural networks, each designed for specific tasks. The most 

common types are Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and 

Multi-Layer Perceptron (MLP) networks. CNNs are used for image recognition and video processing 

due to their high capacity for capturing features in spatial dimensions. RNNs are effective in processing 

sequential data, such as time series, because of their ability to retain information over time. The MLP, 

on the other hand, is a general-purpose neural network [16]. 

In analogy to the human brain, ANNs can organize their neurons or nodes to perform tasks quickly, 

focusing on a specific task. Their components include activation functions, summation, and synaptic 

weights [8], as illustrated in Figure 2. 

 

 

Figure 2. Diagram of an Artificial Neuron, [17]. 

The input data, represented by 𝑥𝑗, are the starting point of a neuron. They are connected to each synaptic 

weight in the hidden layers, 𝑤𝑘𝑗, which are determined during the training of the ANN. The summation 

is responsible for the total sum of the products between the input data and the synaptic weights,  𝑢𝑘 [8]. 

 

According to the author, the activation function, 𝑔( ), determines the output value of a neuron through 

mathematical functions such as linear, hyperbolic tangent, sigmoid, and threshold functions. The biases, 

𝑏𝑘, are applied outside the summation and have the power to adjust the summation response values up 

or down, allowing the ANN to make corrections after the input data is inserted. Finally, the output, 

which can be more than one depending on the network model, is determined. Mathematically, the 

neuron's operation is described by equations 4 and 5. 

 

𝑢𝑘 =  ∑ 𝑤𝑘𝑗 ∗ 𝑥𝑗

𝑚

1

                                                                   (4) 

 

𝑦𝑘 = 𝑔( 𝑢𝑘 + 𝑏𝑘)                                                                      (5) 

The units are organized in layers interconnected by synaptic connections, where there are input and 

output layers as well as hidden layers, which are received by each neuron in the network. The most 

well-known and simplest artificial neural network technique with this structure is the Multi-Layer 

Perceptron (MLP) (Figure 3), which operates in two phases: learning and execution. Additionally, it is 

known for solving function approximation, optimization, and prediction problems [18]. 
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Figure 3. Architecture of a Multi-Layer Perceptron (MLP), [18]. 

The input layer receives the data that the network will process, where each neuron in this layer 

corresponds to a feature imposed on the input data by the designer. The hidden layers perform the more 

complex part of the network, as each neuron in this layer is connected to both the input and output 

layers, and each of these connections has a weight that is adjusted during the machine's training phase. 

As the name suggests, the output layer contains the final results of the network, with the number of 

neurons in this layer corresponding to the number of responses the network is configured to predict 

[16]. 

According to [19], the algorithm for updating the synaptic weights of an MLP is Backpropagation. This 

algorithm involves two phases in its implementation: forward propagation and backward propagation. 

In forward propagation, the input signals remain unchanged as they propagate through all the layers to 

the network's output, without any change in their weights.  

Backward propagation involves propagating the calculation error from the output back to the hidden 

and input layers through the network. During this propagation, the gradients of the loss function 

concerning each weight are calculated using the chain rule. The weights are then adjusted in the opposite 

direction of the gradient using gradient descent, thus reducing the network's error [19]. 

Once the network is trained, it can perform the tasks programmed in its interface. It is important to note 

that the neural network's performance will only be beneficial if the network architecture, the 

implemented algorithm, the dataset used in the training phase, and all its layers and neurons are well-

specified and interconnected, thereby producing a minimal sum of errors as the network's function 

desires [20]. 

Given this, an ANN can be used to minimize error impacts, particularly in the field of Geotechnics. In 

a study by [21], artificial neural networks were used to relate the settlement of isolated piles to their 

geometric properties and the results obtained from SPT tests on soil consistency. Using the QNET 2000 

software, the correlation coefficient result was 0.94 in the validation phase. 

[22] used ANNs to estimate the load-bearing capacity of continuous flight auger piles and precast 

concrete piles, comparing the results with those obtained using the semi-empirical methods of Aoki-

Veloso and Décourt-Quaresma. He concluded that the network was satisfactory with only four input 

parameters and a few neurons in the hidden layer. 

IV. MATERIALS AND METHOD 

4.1. Research method  

To determine the load-bearing capacity of a deep foundation, semi-empirical methods based on 

approximations of mathematical models are used. However, these methods do not always yield accurate 

results. For this reason, the use of Artificial Neural Networks (ANNs) in geotechnics has been growing, 

as they provide more precise results that assist in the execution of a foundation. 
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Based on the discussions proposed by [23], the research conducted in this work can be classified by its 

methodology as explanatory, regarding its objective, and also quantitative and statistical regarding its 

approach. For data collection, procedures based on ex-post facto were used. 

To obtain the results proposed in this work, two types of variables were defined. The first variable was 

classified as dependent, which is the one where modelling will occur to predict the values it will assume 

when there is no information about it. In this study, the dependent variable is the load-bearing capacity. 

The second variable consists of the characteristics that the model user has available for project 

development, being independent. In this work, the data for this variable are obtained from SPT-N values 

and their respective depth. 

4.2. Database  

The data used as the second variable for the modelling process were obtained from SPT test reports 

conducted in the city of Balsas, in the state of Maranhão. According to IBGE (2022), the municipality 

is situated at an altitude of 243 meters and has the following geographic coordinates: latitude: -7º 31’ 

59’’ S and longitude: 46° 2' 6'' W. It has a population of 101,767 inhabitants and covers a territorial area 

of  13,141.637 km². Figure 4 shows the location of the municipality in relation to the State of Maranhão. 

 
Figure 4. Location of the municipal. 

The reports were provided by Company Y and the coordinates of the identified points are shown in 

Figure 5. 

 
Figure 5. Points where SPT tests were conducted. 
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Therefore, upon analysing the 26 reports provided by Company Y, it was found that in certain tests, 

more than one hole was drilled per coordinate, totalling 68 holes. For each drilling depth, an SPT-N 

value was obtained, and these data were used for modeling the artificial neural network. 

4.3. Model used  

The model used in the network was implemented in three stages: construction of the algorithm and 

selection of the type of ANN, training and specifications of the artificial neural networks, and finally, 

the network testing was performed.  

The type of ANN chosen depends on the problem proposed by the designer. In the study in question, 

the MLP (Multilayer Perceptron) was chosen to determine the load capacity values in deep foundations. 

The algorithm used in the network was Backpropagation, which involves calculating the error through 

forward and backward passes. 

The variables used for the calculation of load capacity were: two inputs, SPT-N and depth, one hidden 

layer, varying between 2 to 10 neurons in the hidden layer, and one output corresponding to the load 

capacity value. Figure 6 shows the network topology and the training phase for determining the load 

capacity values. 

 

Figure 6. Network topology. 

Therefore, the value predicted by the network in each loop is then compared with the measured value. 

As a stopping criterion for the network, it was defined that if the error in one loop is greater than 10−7   
compared to the error in another loop, the network continues updating its synaptic weights if this 

condition is not met.  

4.4. Evaluation Metrics 

The model evaluation metrics consist of analyses of statistical characteristics both in the testing phase 

and in the training phase. These are based on assessments through hypothesis testing, Pearson 

correlation, and Root Mean Square Error (RMSE). 

4.4.1. Root mean squared error  

After calculating the values using the artificial neural networks, it was then possible to calculate the 

Root Mean Square Error (RMSE) based on the results from the output layer and the actual values. 

RMSE is mathematically defined as shown in equation 6. 
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𝑅𝑀𝑆𝐸 =  √
1

𝑛
∗ ∑(𝑦𝑖 + 𝑝𝑖)2

𝑛

𝑖=1

                                                  (6) 

Where: 

 𝑦𝑖 is the predicted value for the i-th observation; 

 𝑝𝑖 is the observed value for the i-th observation; 

 𝑛 is the total number of observations. 

RMSE is one of the essential metrics for evaluating prediction models using ANN, providing a 

quantitative measure of the accuracy of their predictions. Compared to other metrics, such as Mean 

Absolute Error (MAE), RMSE can identify and penalize larger errors [25].  

4.4.2. Pearson correlation  

The Pearson correlation was used to check for the occurrence of linearity between the actual and 

predicted values. It is responsible for quantifying the strength and direction of the linear relationship 

between two continuous variables. The formula for calculating the Pearson correlation coefficient 

(equation 7) is given by: 

𝑟 =  
𝑛(∑ 𝑥𝑦) − (∑ 𝑥)(∑ 𝑦)

√[𝑛 ∑ 𝑥2 − (∑ 𝑥)2][𝑛 ∑ 𝑦2 − (∑ 𝑦)2]
                                     (7) 

Where: 

 𝑛 is the number of data pairs; 

 𝑥 and 𝑦 are the variables being compared; 

 ∑ 𝑥𝑦 is the sum of the products of the data pairs; 

 ∑ 𝑥 𝑎𝑛𝑑 ∑ 𝑦 are the sums of the individual variables; 

 ∑ 𝑥2 𝑎𝑛𝑑 ∑ 𝑦2are the sums of the squares of the individual variables. 

According to [26], the correlation ranges between -1 and 1, where the sign indicates its direction and 

the value indicates its magnitude. If the value is closer to 1, the linear association between the variables 

is characterized as strong; if it is closer to zero, the association is almost negligible.  

V. RESULTS AND DISCUSSION 

A computational model based on ANN, designed to calculate load capacity from SPT-N and depth data, 

was proposed in this article. Data from 68 boreholes were used for each simulation, with each borehole 

having different depths, totalling 709 load capacity values. Of this total, 68 values (approximately 10%) 

were randomly reserved for testing, and the remainder was used to train the model. 

The network topology used consists of an input layer, an intermediate layer, and an output layer. 

Simulations were conducted for different numbers of neurons in the intermediate layer and different 

learning rate values. The training and testing results are presented below in graphs and the previously 

defined evaluation metrics. 

The network topology used is composed of three layers: an input layer, an output layer, and a hidden 

layer. In the first simulation, 6 neurons were used in the hidden layer with a learning rate of μ=0.01. 

The results of this simulation are presented in Table 1 and in the graph of Figure 7. 
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Table 1: Simulation with 6 Neurons. 

Metric Value 

RMSE 1,94 kN 

Correlation  0,93 

In Figure 7, it is possible to see how closely the values estimated by the model match the desired values. 

 

Figure 7: Network testing phase with 6 neurons. 

For the second simulation, the number of neurons in the hidden layer was modified, setting it to 8 

neurons. Table 2 presents the error and correlation values obtained with this topology. 

Table 2: Simulation with 8 Neurons. 

Metric Value 

RMSE 2,00 kN 

Correlation  0,93 

 
It is noticeable that increasing the number of neurons in the hidden layer resulted in a slight increase in 

the error value; however, the correlation remained the same. In Figure 8, a comparison between the 

values obtained by the model and the actual values can be observed. 
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Figure 8: Network Testing Phase with 8 Neurons. 

 
In order to have a broader view of the simulations, Tables 3 to 7 present the simulation values for 

different learning rates and numbers of neurons in the hidden layer. Initially, 2 neurons were fixed in 

the hidden layer and the learning rate values were varied. Table 3 shows the results of these simulations. 

 
Table 3: Results of the Network with 2 Neurons. 

Number of neurons in the 

hidden layer 
Learning rate RMSE Correlation 

2 

0,1 1,94211931 0,941788378 

0,2 2,09703424 0,904014988 

0,3 2,06777628 0,914820487 

0,4 2,4620696 0,906868907 

0,5 2,2755417 0,92114097 

0,6 2,29602668 0,92062478 

0,7 2,41789689 0,921329994 

0,8 1,91014049 0,955081479 

0,9 1,81110241 0,954929634 

1 3,33067794 0,913955275 

 

It is noticeable that the best result when the number of neurons was fixed at 2 occurred when the learning 

rate used was 0.9. Another simulation was conducted by fixing 4 neurons in the hidden layer and varying 

the learning rate values. The results of this simulation are presented in Table 4. 
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Table 4: Results of the Network with 4 Neurons. 

Number of neurons in the 

hidden layer 
Learning rate RMSE Correlation 

4 

0,1 2,12920883 0,927012651 

0,2 1,54966102 0,950414351 

0,3 1,99730469 0,943785856 

0,4 1,80576442 0,939042062 

0,5 2,38794901 0,921268879 

0,6 1,88554196 0,933481299 

0,7 3,1582591 0,944415238 

0,8 3,44813794 0,933539309 

0,9 2,60068657 0,915437275 

1 2,40306136 0,899634558 

 

For 4 neurons in the hidden layer, the best result was obtained with a learning rate of 0.2. Following the 

same methodology of fixing the number of neurons in the hidden layer and varying the learning rate, 

Table 5 presents the results for 6 neurons in the hidden layer. 

 
Table 5: Results of the Network with 6 Neurons. 

Number of neurons in the 

hidden layer 
Learning rate RMSE Correlation 

6 

0,1 1,70121848 0,953344514 

0,2 2,46477456 0,920706435 

0,3 2,06445471 0,9384334 

0,4 2,28858395 0,924912493 

0,5 2,74862754 0,876012368 

0,6 2,03397933 0,913573554 

0,7 2,90541789 0,915521827 

0,8 2,73197701 0,931875275 

0,9 2,25870292 0,930770002 

1 3,99954007 0,90787199 

 

For 6 neurons in the hidden layer, the best result was obtained with a learning rate of 0.1. In the 

penultimate simulation, eight neurons were fixed in the hidden layer. Table 6 presents the results for 

this simulation. 
Table 6: Results of the Network with 8 Neurons. 

Number of neurons in the 

hidden layer 
Learning rate RMSE Correlation 

8 

0,1 2,65040869 0,904444848 

0,2 2,2351627 0,911829876 

0,3 2,08928934 0,93844497 

0,4 2,17904337 0,924965393 

0,5 2,67351468 0,88643435 

0,6 2,33760268 0,912957167 

0,7 3,75295424 0,894947321 

0,8 2,14574767 0,931255397 

0,9 3,57288427 0,925948839 

1 4,18216093 0,868132723 
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With 8 neurons in the hidden layer, the best result was achieved with a learning rate of 0.3. Finally, a 

simulation was conducted with 10 neurons in the hidden layer. The results for this group of simulations 

are presented in Table 7. 

Table 7: Results of the Network with 10 Neurons. 

Number of neurons in the 

hidden layer 
Learning rate RMSE Correlation 

10 

0,1 2,47489422 0,91510898 

0,2 4,31178155 0,947399929 

0,3 1,98704772 0,90597883 

0,4 2,30947364 0,898714947 

0,5 1,89046129 0,942592974 

0,6 2,10081816 0,959191648 

0,7 2,65189015 0,91694354 

0,8 5,59881005 0,89008605 

0,9 5,15250675 0,900390976 

1 3,35600769 0,875248464 

 

With 10 neurons in the hidden layer, the best result was obtained with the learning rate set at 0.5. 

Overall, among all the simulations presented, the best result was achieved when four neurons were fixed 

in the hidden layer and the learning rate was set to 0.2 (RMSE = 1.54 and correlation = 0.95), as shown 

in Table 8. 

 
Table 8: Simulation Results. 

Number of neurons in 

the hidden layer Learning rate RMSE Correlation 

2 0,9 1,81110241 0,954929634 
4 0,2 1,54966102 0,950414351 

6 0,1 1,70121848 0,953344514 

8 0,3 2,08928934 0,93844497 

10 0,5 1,89046129 0,942592974 
 

VI. CONCLUSIONS  

Deep foundations generally depend on good design and precise calculations regarding the load they will 

support. However, using semi-empirical methods to calculate their load capacity requires numerous 

variables. On the other hand, for calculating this capacity using ANNs, only two variables are necessary. 

To determine the load capacity values for different SPT tests conducted in the city of Balsas-MA, 

artificial neural networks of the MLP type were used in this work. To present the results, statistical 

evaluation metrics such as RMSE and Pearson correlation were utilized. 

In this context, the neural model underwent various tests with the number of neurons in the hidden layer 

ranging from 2 to 10. The best result was obtained when four neurons were fixed in the hidden layer 

and a learning rate of 0.2 was used (RMSE = 1.54 and Pearson correlation = 0.95). 

This result demonstrates that using ANNs can aid in determining load capacity values in deep 

foundations. However, if the database were larger, the study could achieve more effective results, thus 

improving the model to boost its use in civil construction for this type of calculation. 
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Furthermore, the study encourages new investigations into the SPT reports provided. Through them, it 

is possible to use artificial neural network models to calculate the distance between the points under 

study and also to compare the results obtained by the network with load capacity results calculated 

using the semi-empirical methods present in the literature. 
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