
International Journal of Advances in Engineering & Technology, Nov., 2014.

©IJAET ISSN: 22311963

1409 Vol. 7, Issue 5, pp. 1409-1419

IMPLEMENTATION OF TIME EFFICIENT SYSTEM FOR

MEDIAN FILTER USING NIOS II PROCESSOR

Tanushree Selokar1and Narendra G. Bawane2
1, 2Department of Electronics Engineering, R.T.M.N. University, Nagpur, India

ABSTRACT
This paper is intended to develop an operative part of filtering to reduce time using Altera DE2 Cyclone II

board with Altera Nios II processor. 8-bit grayscale bitmaps can be chosen to be used in image processing and

make a time efficient processing. JTAG is used for serial communication to the Nios II processor for processing,

and receives the processed results from Nios II processor to display the results. The algorithm is used to

develop in VHDL and c code to implement it in the project. In this project NIOS II processor is selected as soft

core processor which is commercial processor and Median Filter Algorithm is taken under the case study.

Algorithm implemented by two different ways: software and co-design. NIOS II system is generated using SOPC

builder. Programming has been done in C and NIOS II IDE is used to integrate the system. Algorithm is

implemented separately using Custom Hardware to improve the performance on CYCLONE II FPGA. We are

using VHDL code of the algorithm and processing it in Nios II processor to get a time efficient system.

KEYWORDS: Co-Design, image processing, Custom Hardware, NIOS II processor.

I. INTRODUCTION

In last few decades, embedded systems have experienced an accelerating growth both in computing

power and scope of their possible applications. Moreover the designing procedure for embedded

system also changed immensely. As the application demands goes on increasing with the time the

complexity of the embedded system is waxing. Combination of software and hardware in design leads

to improve the system performance such approach is known as Co-Design.

1.1. Co-design

Hardware/software co-design is the main technique used in the thesis. It can be defined as the

cooperative design of hardware and software. The aim of co-design is to abridge the time-to-market

while reducing the design effort and costs of the designed products [1].

Co-design improves the performance of the system. We are going to generate system, for this purpose

we have taken an algorithm to make the performance enhance system [2,3]. Programming will be

done in C and NIOS II IDE will be used to integrate the system. The soft core processor used is NIOS

II.

We will be using co-design methodology as we are in need of software and hardware description of an

embedded system. “Co-Design is a design methodology supporting the concurrent development of

hardware and software in order to achieve system functionality and performance goals. In particular,

Co-Design often refers to design activities prior to the partitioning into Hardware and Software and

the activity of design partitioning itself”[4]. Figure1 shows general flow of the co-design which

includes the software and hardware part which are being designed simultaneously and being worked

simultaneously as they are being needed in the project to get worked.

The design flow of the general co-design approach is depicted in figure 1

Step1: The co-design process starts with specifying the system behaviour at the system level.

Step 2: After this, a pure software system will be developed to verify all algorithms.

Step 3: Performance analysis will be performed to find out the system bottlenecks.

International Journal of Advances in Engineering & Technology, Nov., 2014.

©IJAET ISSN: 22311963

1410 Vol. 7, Issue 5, pp. 1409-1419

Step 4: The hardware/software partitioning phase a plan will be made to determine which parts will

realized by hardware and which parts will be realized by software. Obviously, some system

bottlenecks will be replaced by hardware to improve the performance.

Step 5: Based on the results of step 4, hardware and software parts will be designed respectively.

Step 6: Co-simulation. At this step, the completed hardware and software parts will be integrated

together and performance analysis will be performed.

Step 7: If the performance meets the requirements, the design can stop and if the Performance can’t

meet the requirements, new HW/SW partitioning and a new design.

Figure 1.Co-design flow[4]

1.2.Motivation

In order to enhance the performance of the system, Co-design method is frequently used. In process of

making an easier explore design tradeoffs, continual verification throughout the design cycle, mutual

influence of both HW and SW early in the design cycle, partitioning (Co-design) is the only way to

get all this features[4].The advanced ASIC and FPGA technologies facilitate the integration of

complex Systems on a Chip (SoC). The use of different Co-design methods is application specific. In

our project work we required an opaque and fast system[1]. The Nios II soft-core processor have the

highest operating frequency it also allows reuse of code and highly configurable. These esteem

features motivate implementation using Co-design with NIOS II soft core processor and study the

performance parameters.

1.3.Aim And Objective

The objective of our project is

1. To design the median filter algorithm in VHDL and C.

2. To design the system for implementing of the algorithm.

3. Partitioning using co-design methodology by custom hardware to get the time efficient

system.

II. METHODOLOGY: MEDIAN FILTER ALGORITHM

Median filter is a spatial filtering operation, so it uses a 2-D mask that is applied to each pixel in the

input image. It is used to remove defects and noise from pictures. Median filter is much less sensitive

than the mean to extreme values (called outliers), therefore it is better without reducing the sharpness

of the image and edge preserving nature. To apply the mask means to centre it in a pixel, evaluating

the covered pixel brightness and determining which brightness value is the median value. The

algorithm is: every pixel from the picture to be filtered is replaced by the median value of the

neighbouring pixels[1]. The picture is thus transformed by the median filter by another picture that

has exactly the same size. For every pixel P of the input picture we first create a list of the 9 (3x3)

International Journal of Advances in Engineering & Technology, Nov., 2014.

©IJAET ISSN: 22311963

1411 Vol. 7, Issue 5, pp. 1409-1419

pixels surrounding P. The 9 pixels are then sorted. The median value is the value located at the center

of the sorted list. The pixel P in the filtered picture takes this median value. In our example the

pictures are grayscale pictures, 8 bits per pixel. The pixel values are between 0 (black) and 255

(white). In the last step, this module will be integrated into FPGA boards together a Nios II CPU.

The median value is determined by placing the brightness in ascending order and selecting the center

value. The obtained median value will be the value for that pixel in the output image. The oldest

sample is discarded, a new sample acquired, and the calculation repeats.

Figure 2. An example of the median filter application, as in this case, habitually a 3x3 median filter is used[9].

Let [X, Y] be the pixel located at row X, column Y of a picture. The value of pixel [4, 5] in the

filtered picture is computed from the 3x3 neighbourhood of the pixel [4, 5] of the source picture, that

is: [3]

The list of pixels: {[3,4],[3,5],[3,6],[4,4],[4,5],[4,6],[5,4],[5,5],[5,6]}.

The list of the pixel values: {122, 94, 247, 78, 34, 45, 207, 103, 18}.

The sorted list is {18, 34, 45, 78, 94, 103, 122, 207, 247}.

The median value is 94 so the value of the pixel in the filtered picture will be 94.

III. RESULTS: IMPLEMENTATION OF ALGORITHM ON FPGA USING NIOS II

PROCESSOR

Algorithm will be implemented on CYCLON II FPGA using NIOS II Processor and the software used

are Quartus II and NIOS II IDE.

NIOS II is a synthesizable VHDL model of a 32-bit processor compliant with the SPARC V8

architecture. The processor is highly flexible in any design configuration, and mainly suitable for

system-on-a-chip (SOC) designs. The NIOS II IDE have GNU compiler with C/C++ license,

Following are some features of NIOS II Soft core Processor.

 Soft IP Core : A soft-core processor is a microprocessor fully described in software, usually in an

HDL, which can be synthesized in programmable hardware, such as FPGAs.

 Reduced Instruction Set Computer (RISC)8/16/32-bits memory controller for external PROM and

SRAM.

 No pipeline, 5 or 6 stages pipeline configurations.

 It has full 32-bit instruction set.

 32 general-purpose registers.

 For more interrupt sources it has external interrupt controller interface.

 Single-instruction 32 × 32 multiply and divide producing a 32-bit result.

 For computing 64-bit and 128-bit products dedicated instructions of multiplication is given.

 Floating-point Custom instructions for single-precision floating-point operations.

International Journal of Advances in Engineering & Technology, Nov., 2014.

©IJAET ISSN: 22311963

1412 Vol. 7, Issue 5, pp. 1409-1419

3.1. Design Steps For Implementation

The system components required for Software/Hardware implementation of Median filter algorithm

on FPGA in QUARTUS II software.

 NIOS II Processor

 JTAG UART

 SRAM MEMORY

 Input ,Output GPIO’S

 Performance Counter

 SOPC Builder automatically generates the interconnect logic to integrate the components in the

hardware system. It can be selected from a list of standard processor cores and components provided

with the Nios II EDS [5]. Following window shows the selection of components required and its

system generation.

Figure 3. System contents in SOPC Builder

In the Figure 3, the components required to build a system are taken in SOPC Builder.

Figure 4. System Generation without custom hardware

International Journal of Advances in Engineering & Technology, Nov., 2014.

©IJAET ISSN: 22311963

1413 Vol. 7, Issue 5, pp. 1409-1419

In Figure 4, the successful generation of the system is shown.

Figure 5. NIOS System without custom hardware Block Diagram File view.

In Figure 5, integration of SOPC Builder with Quartus Software is shown. In this BDF the pin

assignment is done by importing the pin assignment of Cyclone II (EP2C35F672C6) FPGA.

The generation of system in hardware is complete. Here the connection between Cyclone II FPGA

and host computer is done by cable USB-Blaster. After successful hardware generation time limited

file is generated.

3.2. Software flow using NIOS II System

The results for median filter using NIOS II IDE in c-code has given below. After Generation of

system in Quartus II software the .sopcinfo file is called up in NIOS II IDE as a hardware platform.

The new project is made in NIOS II IDE, then the project for C-code is chosen in which the

“hello_world” template is selected. The C-code for Median filter Algorithm is written in

Hello_world.c file. Then the project is build using Build Project command. After the project build the

code will be implemented on CYCLONE II (EP2C35F672C6) FPGA using command Run as NIOS

II Hardware. After all these steps the output will be seen in NIOS II Console Window[6].

Figure 6.Nios II Processor Software Flow

International Journal of Advances in Engineering & Technology, Nov., 2014.

©IJAET ISSN: 22311963

1414 Vol. 7, Issue 5, pp. 1409-1419

In Figure 6, the output of implementation of Algorithm on FPGA is shown with clock cycles and time

required for execution of Algorithm. The table no.1 shows the clock cycles required for software

flow.

Table 1. Clock Cycles for execution of Algorithm in software

IV. RESULTS: IMPLEMENTATION OF ALGORITHM WITH CUSTOM

HARDWARE ON FPGA USING NIOS II PROCESSOR

In hardware implementation, interfacing of median filter and Nios II processor is done. While

designing a system that includesaNios II embedded processor, we can accelerate time-critical software

algorithms by interfacing custom hardware to the Nios II processor.

4.1. Design Steps For The Hardware Implementation

After software implementation same procedure has to be followed with some changes in system.

1. For hardware implementation system is generated in SOPC builder.

2. Implementation of Algorithm is done on FPGA using NIOS II IDE.

3. Inputs are being provided from the FPGA board and we run it in NIOS II IDE.

4. The program calculates the processing time and throughput for each of the versions, to demonstrate

the improved efficiency of a custom hardware compared to software implementation.

Figure 7.Nios II Processor is selected as before for Custom Hardware Flow.

Figure 7 shows selection of in NIOS II Processor. The inclusion of floating point hardware in

processor keeping all other peripherals same, it leads to increase in hardware. It maps the memory

location from SRAM interface in SOPC builder. For data transfer it uses the 32-bit internal registers if

Nios II processor[7].

Median filter

Algorithm

Hardware required in

percentage

Clock Cycles Time Required

Software 3110/33216 (9%)

61413clk cycles 0.00122826 sec

International Journal of Advances in Engineering & Technology, Nov., 2014.

©IJAET ISSN: 22311963

1415 Vol. 7, Issue 5, pp. 1409-1419

Figure 8. RTL view of Custom Hardware

Figure 8 shows the RTL of Custom Hardware. The Nios II embedded Design Suite (EDS) generates a

macro in the system header file, system.h. You can use the macro directly in your C or C++

application code, and you do not need to program assembly code to access custom hardware. Software

can also invoke custom instructions in Nios II processor assembly language. Custom Hardware is

added as floating point hardware in NIOS II processor. It contains following files[8].

floating_point.c— main program

floating_point.h—global definitions

floating_point_CI.c—functions to exercise the floating-point custom instructions

floating_point_SW.c—functions to exercise the software-implemented floating-point operations.

4.2. Results Of Median Filter Algorithm Using Custom Hardware

The System is generated in SOPC Builder. In this system the custom hardware is added as floating

point hardware.

Figure 9. System for custom hardware flow in SOPC Builder

International Journal of Advances in Engineering & Technology, Nov., 2014.

©IJAET ISSN: 22311963

1416 Vol. 7, Issue 5, pp. 1409-1419

Figure 10. System Generation for Custom Hardware

Figure 9 and Figure 10 shows the system contents and generation of system in SOPC Builder. After

generation of system in SOPC, the pin assignment and compilation is done in QUARTUS II.

Figure 11. NIOS System with custom hardware Block Diagram File view

In Quartus II, The pin assignment is done by importing the file of CYCLONE II (EP2C35F672C6)

FPGA. In the figure 11 the address lines from SRAM memory are assigned to custom hardware. After

the successful compilation of system, hardware generation in CYCLONE II FPGA is done and time

limited file is generated. After hardware generation of system using CYCLONE II FPGA, the

algorithm is implemented in NIOS II IDE. We have to follow same steps as stated with addition of

Custom Hardware files in NIOS II IDE Project.

After generating hello_world.cfile, we have to add custom instruction files floating_point.c,

floating_point.h, floating_point_CI.c and floating_point_SW.cin the project. Then the project is build

by command Build Project. While building a project, a macro function system.h is generated which

connects the C-code of algorithm to Custom hardware. After successful build of project the Algorithm

is implemented on CYCLONE II (EP2C35F672C6) FPGA. This implementation is done by command

Run as NIOS II Hardware. After execution of this command the result is shown in NIOS II console

window.

International Journal of Advances in Engineering & Technology, Nov., 2014.

©IJAET ISSN: 22311963

1417 Vol. 7, Issue 5, pp. 1409-1419

Figure 12. Median Filter result with Custom Hardware

In Figure 12, the output of implementation of Algorithm on FPGA is shown with clock cycles and

time required for execution of Algorithm. The table 2 shows the clock cycles required with custom

hardware.

Table 2. Clock Cycles for execution of Algorithm in Hardware

V. CONCLUSION

Median Filter Algorithm considered as a case study is implemented using the hardware / software co-

design methodology. Hardware / software co-design methodology implementation gives an optimized

design of the algorithm. Algorithm is implemented on CYCLONE II FPGA based around NIOS II

processor.

85% efficiency is achieved by using custom hardware. Also, when Algorithm is implemented with

NIOS II system using Custom Hardware, speed of the Median filter algorithm is increased but area

required for the implementation is also increased.

5.1. Synthesis Report

After execution of Algorithm on FPGA with and without custom hardware, their comparison is done

for parameters clock cycles. From the table no. 1 and table no. 2 the comparison is done shown in

table3.

Table 3. CPU Clock cycles and time required

Algorithm Hardware required in

Percentage

Clock Cycles Time Required

Custom Hardware 3238/33216 (10%)

8689 clk cycles 0.00017378 sec

Items Clock Cycles Time Required

Algorithm Without Custom Hardware 61413 0.00122826 Sec

Algorithm With Custom Hardware 8689 0.00017378 Sec

International Journal of Advances in Engineering & Technology, Nov., 2014.

©IJAET ISSN: 22311963

1418 Vol. 7, Issue 5, pp. 1409-1419

From the performance analysis results of clock cycles and time required for execution in software is

more as compared with execution of algorithm in hardware. The system which is generated using

SOPC Builder is compiled in Quartus II software. The hardware required for generation of system is

depending upon the LE’s used in CYCLONE II (EP2C35F672C6) FPGA. The comparison in

hardware change is shown in table 4.

Table 4. Comparison of compilation report

The above table shows the comparison between the software and hardware systems i.e. system with

and without custom hardware. It shows that inclusion of custom hardware increases the hardware

which gives better result in terms of clock cycles and require for execution of algorithm.

VI. FUTURE SCOPE

As the selected Processor is soft core processor, enabling change of hardware according to the

application. Optimizations in area, required for Median filter Algorithm; can be obtained by designing

various optimization approaches for the various blocks of the algorithm. Here, Median filter algorithm

is accelerated using custom hardware with NIOS II processor, in future acceleration image processing

can be done by median filter. It can also work with the custom instruction.

REFERENCES

[1] G. Bosman “A Survey of Co-Design Ideas and Methodologies”, Vriji University, Amsterdam, July, 2005.

[2] “Nios II Processor Handbook”, Altera Corporation, 2007.

[3] Jason G. Tong, Ian D. L. Anderson and Mohammed A. S. Khalid, “Soft-Core Processors for Embedded

Systems” University of Windsor, The 18th International Conference on Microelectronics (ICM) 2006.

[4] “Rolf Ernst “Co design of Embedded Systems: Status and Trends”, Braunschweig University of

Technology, IEEE Design & Test of computers, April–June 1998

[5] Ery Arias-Castro and David L. Donoho, “Does Median Filtering truly preserve edges better than linear

filtering” University of California, San Diego and Stanford University, The Annals of Statistics,2009, Vol.

37, No. 3, 1172–1206.

[6] Altera Corporation, “NIOS II Software Developer’s Handbook”,2011.

[7] Nallaperumal.K,Varghese.J, Saudia.S , Annam.S, Kumar.P, “Iterative Adaptive Switching Median Filter”,

Industrial Electronics and Applications, Singapore, 1ST IEEE Conference onAltera Corporation, “NIOS II

Processor Reference Handbook,”2010.

[8] AnisBoudabous, Ahmed Ben Atitallah, LazharKhriji, Patrice Kadionik, and NouriMasmoudi,

“HW/SWDesign-Based Implementation of Vector Median Rational Hybrid Filter”, Sultan Qaboos

University, Oman, University Bordeaux I, France, The International Arab Journal of Information

Technology, Vol. 7, No. 1, January 2010.

[9] Chen Kah Yee, “Median Filter Using NIOS II Processor With Sort Hardware Accelerator”, University

Technology Malaysia, May 2009.

Items Total

Count

Without Custom

Hardware

With Custom

Hardware

Total Logic Elements 33216 3110(9%) 3238(10%)

Total Combinational Functions 33216 2934(9%) 3044(9%)

Dedicated Logic Registers 33216 1915(6%) 2018(6%)

Total Pins 475 61(13%) 75(16%)

Total Memory Bits 483840 46208(10%) 46208(10%)

Embedded multipliers 9-bit Elements 70 4(6%) 4(6%)

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4025693

International Journal of Advances in Engineering & Technology, Nov., 2014.

©IJAET ISSN: 22311963

1419 Vol. 7, Issue 5, pp. 1409-1419

AUTHOR BIOGRAPHY

Tanushree Selokar Date of Birth: 27-11-1989Education: M.Tech. in Electronics from

Nagpur University, Nagpur India B.E in Electronics from Nagpur University, Umrer, India

Narendra G Bawane, M. Tech. (IIT, Delhi), Ph. D. (VNIT)

He has total teaching experience of more than 23 years at graduate and Post-graduate level.

His areas of interest are Artificial Neural Network (ANN), Embedded system, Fuzzy logic

system, Wavelet analysis, Hybrid intelligence, Image processing & Emotion in speech and

facial recognition, Biomedical engineering etc.

