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ABSTRACT

This paper is intended to develop an operative part of filtering to reduce time using Altera DE2 Cyclone Il
board with Altera Nios Il processor. 8-bit grayscale bitmaps can be chosen to be used in image processing and
make a time efficient processing. JTAG is used for serial communication to the Nios Il processor for processing,
and receives the processed results from Nios Il processor to display the results. The algorithm is used to
develop in VHDL and c¢ code to implement it in the project. In this project NIOS Il processor is selected as soft
core processor which is commercial processor and Median Filter Algorithm is taken under the case study.
Algorithm implemented by two different ways: software and co-design. NIOS Il system is generated using SOPC
builder. Programming has been done in C and NIOS Il IDE is used to integrate the system. Algorithm is
implemented separately using Custom Hardware to improve the performance on CYCLONE Il FPGA. We are
using VHDL code of the algorithm and processing it in Nios Il processor to get a time efficient system.

KEYWORDS: Co-Design, image processing, Custom Hardware, NIOS Il processor.

l. INTRODUCTION

In last few decades, embedded systems have experienced an accelerating growth both in computing
power and scope of their possible applications. Moreover the designing procedure for embedded
system also changed immensely. As the application demands goes on increasing with the time the
complexity of the embedded system is waxing. Combination of software and hardware in design leads
to improve the system performance such approach is known as Co-Design.

1.1. Co-design

Hardware/software co-design is the main technique used in the thesis. It can be defined as the
cooperative design of hardware and software. The aim of co-design is to abridge the time-to-market
while reducing the design effort and costs of the designed products [1].

Co-design improves the performance of the system. We are going to generate system, for this purpose
we have taken an algorithm to make the performance enhance system [2,3]. Programming will be
done in C and NIOS Il IDE will be used to integrate the system. The soft core processor used is NIOS
1.

We will be using co-design methodology as we are in need of software and hardware description of an
embedded system. “Co-Design is a design methodology supporting the concurrent development of
hardware and software in order to achieve system functionality and performance goals. In particular,
Co-Design often refers to design activities prior to the partitioning into Hardware and Software and
the activity of design partitioning itself’[4]. Figurel shows general flow of the co-design which
includes the software and hardware part which are being designed simultaneously and being worked
simultaneously as they are being needed in the project to get worked.

The design flow of the general co-design approach is depicted in figure 1

Stepl: The co-design process starts with specifying the system behaviour at the system level.

Step 2: After this, a pure software system will be developed to verify all algorithms.

Step 3: Performance analysis will be performed to find out the system bottlenecks.
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Step 4: The hardware/software partitioning phase a plan will be made to determine which parts will
realized by hardware and which parts will be realized by software. Obviously, some system
bottlenecks will be replaced by hardware to improve the performance.
Step 5: Based on the results of step 4, hardware and software parts will be designed respectively.
Step 6: Co-simulation. At this step, the completed hardware and software parts will be integrated
together and performance analysis will be performed.
Step 7: If the performance meets the requirements, the design can stop and if the Performance can’t
meet the requirements, new HW/SW partitioning and a new design.
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Figure 1.Co-design flow[4]

1.2.Motivation

In order to enhance the performance of the system, Co-design method is frequently used. In process of
making an easier explore design tradeoffs, continual verification throughout the design cycle, mutual
influence of both HW and SW early in the design cycle, partitioning (Co-design) is the only way to
get all this features[4].The advanced ASIC and FPGA technologies facilitate the integration of
complex Systems on a Chip (SoC). The use of different Co-design methods is application specific. In
our project work we required an opague and fast system[1]. The Nios Il soft-core processor have the
highest operating frequency it also allows reuse of code and highly configurable. These esteem
features motivate implementation using Co-design with NIOS 11 soft core processor and study the
performance parameters.

1.3.Aim And Objective

The objective of our project is
1. To design the median filter algorithm in VHDL and C.
2. To design the system for implementing of the algorithm.
3. Partitioning using co-design methodology by custom hardware to get the time efficient
system.

Il. METHODOLOGY: MEDIAN FILTER ALGORITHM

Median filter is a spatial filtering operation, so it uses a 2-D mask that is applied to each pixel in the
input image. It is used to remove defects and noise from pictures. Median filter is much less sensitive
than the mean to extreme values (called outliers), therefore it is better without reducing the sharpness
of the image and edge preserving nature. To apply the mask means to centre it in a pixel, evaluating
the covered pixel brightness and determining which brightness value is the median value. The
algorithm is: every pixel from the picture to be filtered is replaced by the median value of the
neighbouring pixels[1]. The picture is thus transformed by the median filter by another picture that
has exactly the same size. For every pixel P of the input picture we first create a list of the 9 (3x3)
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pixels surrounding P. The 9 pixels are then sorted. The median value is the value located at the center
of the sorted list. The pixel P in the filtered picture takes this median value. In our example the
pictures are grayscale pictures, 8 bits per pixel. The pixel values are between 0 (black) and 255
(white). In the last step, this module will be integrated into FPGA boards together a Nios 11 CPU.

The median value is determined by placing the brightness in ascending order and selecting the center
value. The obtained median value will be the value for that pixel in the output image. The oldest
sample is discarded, a new sample acquired, and the calculation repeats.
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Figure 2. An example of the median filter application, as in this case, habitually a 3x3 median filter is used[9].

Let [X, Y] be the pixel located at row X, column Y of a picture. The value of pixel [4, 5] in the
filtered picture is computed from the 3x3 neighbourhood of the pixel [4, 5] of the source picture, that
is: [3]

The list of pixels: {[3,4],[3,5].[3,6].[4,4],[4,5].[4,6],[5.,4].[5.,5].[5,6]}.

The list of the pixel values: {122, 94, 247, 78, 34, 45, 207, 103, 18}.

The sorted list is {18, 34, 45, 78, 94, 103, 122, 207, 247}.

The median value is 94 so the value of the pixel in the filtered picture will be 94.

I1l. REsSULTS: IMPLEMENTATION OF ALGORITHM ON FpPGA UsING Nios Il
PROCESSOR

Algorithm will be implemented on CYCLON Il FPGA using NIOS Il Processor and the software used
are Quartus Il and NIOS 1l IDE.

NIOS Il is a synthesizable VHDL model of a 32-bit processor compliant with the SPARC V8
architecture. The processor is highly flexible in any design configuration, and mainly suitable for
system-on-a-chip (SOC) designs. The NIOS Il IDE have GNU compiler with C/C++ license,
Following are some features of NIOS 1l Soft core Processor.

» Soft IP Core : A soft-core processor is a microprocessor fully described in software, usually in an
HDL, which can be synthesized in programmable hardware, such as FPGAs.

Reduced Instruction Set Computer (RISC)8/16/32-bits memory controller for external PROM and
SRAM.

No pipeline, 5 or 6 stages pipeline configurations.

It has full 32-bit instruction set.

32 general-purpose registers.

For more interrupt sources it has external interrupt controller interface.

Single-instruction 32 x 32 multiply and divide producing a 32-bit result.

For computing 64-bit and 128-bit products dedicated instructions of multiplication is given.
Floating-point Custom instructions for single-precision floating-point operations.

VVVVVVY 'V
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3.1. Design Steps For Implementation

The system components required for Software/Hardware implementation of Median filter algorithm
on FPGA in QUARTUS Il software.

» NIOS Il Processor

» JTAG UART

» SRAM MEMORY

» Input ,Output GPIO’S

» Performance Counter

SOPC Builder automatically generates the interconnect logic to integrate the components in the
hardware system. It can be selected from a list of standard processor cores and components provided
with the Nios Il EDS [5]. Following window shows the selection of components required and its

system generation.
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Figure 3. System contents in SOPC Builder

In the Figure 3, the components required to build a system are taken in SOPC Builder.
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Figure 4. System Generation without custom hardware
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In Figure 4, the successful generation of the system is shown.
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Figure 5. NIOS System without custom hardware Block Diagram File view.

In Figure 5, integration of SOPC Builder with Quartus Software is shown. In this BDF the pin
assignment is done by importing the pin assignment of Cyclone Il (EP2C35F672C6) FPGA.

The generation of system in hardware is complete. Here the connection between Cyclone 1l FPGA
and host computer is done by cable USB-Blaster. After successful hardware generation time limited
file is generated.

3.2. Software flow using NIOS Il System

The results for median filter using N1OS I1 IDE in c-code has given below. After Generation of
system in Quartus Il software the .sopcinfo file is called up in NIOS II IDE as a hardware platform.
The new project is made in NIOS 1l IDE, then the project for C-code is chosen in which the
“hello_world” template is selected. The C-code for Median filter Algorithm is written in
Hello_world.c file. Then the project is build using Build Project command. After the project build the
code will be implemented on CYCLONE Il (EP2C35F672C6) FPGA using command Run as NIOS
Il Hardware. After all these steps the output will be seen in NIOS 11 Console Window([6].
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Figure 6.Nios Il Processor Software Flow
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In Figure 6, the output of implementation of Algorithm on FPGA is shown with clock cycles and time
required for execution of Algorithm. The table no.1 shows the clock cycles required for software
flow.

Table 1. Clock Cycles for execution of Algorithm in software

Median filter Hardware required in | Clock Cycles Time Required
Algorithm percentage
Software 3110/33216 (9%) 61413clk cycles 0.00122826 sec

IV. REesuLTS: IMPLEMENTATION OF ALGORITHM WITH CusTOM
HARDWARE ON FPGA USING N10S Il PROCESSOR

In hardware implementation, interfacing of median filter and Nios Il processor is done. While
designing a system that includesaNios 1l embedded processor, we can accelerate time-critical software
algorithms by interfacing custom hardware to the Nios Il processor.

4.1. Design Steps For The Hardware Implementation

After software implementation same procedure has to be followed with some changes in system.

1. For hardware implementation system is generated in SOPC builder.

2. Implementation of Algorithm is done on FPGA using NIOS |1 IDE.

3. Inputs are being provided from the FPGA board and we run it in NIOS |1 IDE.

4. The program calculates the processing time and throughput for each of the versions, to demonstrate
the improved efficiency of a custom hardware compared to software implementation.
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Figure 7.Nios Il Processor is selected as before for Custom Hardware Flow.

Figure 7 shows selection of in NIOS Il Processor. The inclusion of floating point hardware in
processor keeping all other peripherals same, it leads to increase in hardware. It maps the memory
location from SRAM interface in SOPC builder. For data transfer it uses the 32-bit internal registers if
Nios Il processor[7].
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Figure 8. RTL view of Custom Hardware

Figure 8 shows the RTL of Custom Hardware. The Nios Il embedded Design Suite (EDS) generates a
macro in the system header file, system.h. You can use the macro directly in your C or C++
application code, and you do not need to program assembly code to access custom hardware. Software
can also invoke custom instructions in Nios Il processor assembly language. Custom Hardware is
added as floating point hardware in NIOS Il processor. It contains following files[8].
floating_point.c— main program

floating_point.h—global definitions

floating_point_Cl.c—functions to  exercise the  floating-point  custom instructions
floating_point_SW.c—functions to exercise the software-implemented floating-point operations.

4.2. Results Of Median Filter Algorithm Using Custom Hardware

The System is generated in SOPC Builder. In this system the custom hardware is added as floating
point hardware.
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Figure 9. System for custom hardware flow in SOPC Builder
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Figure 10. System Generation for Custom Hardware

Figure 9 and Figure 10 shows the system contents and generation of system in SOPC Builder. After
generation of system in SOPC, the pin assignment and compilation is done in QUARTUS II.

i I
PIN PIN_AE4
Pil_ACI1
PIN_ADS ||
PIN_AES | |
PIN_ADT0 | -
PIN_AFS [ -
PIN_AETD
AATT |
RakEml|
RET_ |
AT
AEE |
_AFe ||

resoatal7..0) in_port_to_the_pio_in[7..0]

Figure 11. NIOS System with custom hardware Block Diagram File view

In Quartus 11, The pin assignment is done by importing the file of CYCLONE Il (EP2C35F672C6)
FPGA. In the figure 11 the address lines from SRAM memory are assigned to custom hardware. After
the successful compilation of system, hardware generation in CYCLONE Il FPGA is done and time
limited file is generated. After hardware generation of system using CYCLONE Il FPGA, the
algorithm is implemented in NIOS Il IDE. We have to follow same steps as stated with addition of
Custom Hardware files in NIOS Il IDE Project.

After generating hello_world.cfile, we have to add custom instruction files floating_point.c,
floating_point.h, floating_point_CI.c and floating_point_SW.cin the project. Then the project is build
by command Build Project. While building a project, a macro function system.h is generated which
connects the C-code of algorithm to Custom hardware. After successful build of project the Algorithm
is implemented on CYCLONE Il (EP2C35F672C6) FPGA. This implementation is done by command
Run as NIOS Il Hardware. After execution of this command the result is shown in NIOS Il console
window.
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Figure 12. Median Filter result with Custom Hardware

In Figure 12, the output of implementation of Algorithm on FPGA is shown with clock cycles and
time required for execution of Algorithm. The table 2 shows the clock cycles required with custom
hardware.

Table 2. Clock Cycles for execution of Algorithm in Hardware

Algorithm Hardware required in Clock Cycles Time Required
Percentage
Custom Hardware 3238/33216 (10%) 8689 clk cycles 0.00017378 sec

V. CONCLUSION

Median Filter Algorithm considered as a case study is implemented using the hardware / software co-
design methodology. Hardware / software co-design methodology implementation gives an optimized
design of the algorithm. Algorithm is implemented on CYCLONE Il FPGA based around NIOS II
processor.

85% efficiency is achieved by using custom hardware. Also, when Algorithm is implemented with
NIOS 11 system using Custom Hardware, speed of the Median filter algorithm is increased but area
required for the implementation is also increased.

5.1. Synthesis Report

After execution of Algorithm on FPGA with and without custom hardware, their comparison is done
for parameters clock cycles. From the table no. 1 and table no. 2 the comparison is done shown in
table3.

Table 3. CPU Clock cycles and time required

Items Clock Cycles Time Required
Algorithm Without Custom Hardware 61413 0.00122826 Sec
Algorithm With Custom Hardware 8689 0.00017378 Sec
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From the performance analysis results of clock cycles and time required for execution in software is
more as compared with execution of algorithm in hardware. The system which is generated using
SOPC Builder is compiled in Quartus Il software. The hardware required for generation of system is
depending upon the LE’s used in CYCLONE Il (EP2C35F672C6) FPGA. The comparison in
hardware change is shown in table 4.

Table 4. Comparison of compilation report

Items Total Without Custom With Custom
Count Hardware Hardware
Total Logic Elements 33216 3110(9%) 3238(10%)
Total Combinational Functions 33216 2934(9%) 3044(9%)
Dedicated Logic Registers 33216 1915(6%) 2018(6%)
Total Pins 475 61(13%) 75(16%)
Total Memory Bits 483840 46208(10%) 46208(10%)
Embedded multipliers 9-bit Elements 70 4(6%) 4(6%)

The above table shows the comparison between the software and hardware systems i.e. system with
and without custom hardware. It shows that inclusion of custom hardware increases the hardware
which gives better result in terms of clock cycles and require for execution of algorithm.

VI. FUTURE SCOPE

As the selected Processor is soft core processor, enabling change of hardware according to the
application. Optimizations in area, required for Median filter Algorithm; can be obtained by designing
various optimization approaches for the various blocks of the algorithm. Here, Median filter algorithm
is accelerated using custom hardware with NIOS |1 processor, in future acceleration image processing
can be done by median filter. It can also work with the custom instruction.
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