International Journal of Advances in Engineering & Technology, Nov., 2014.
OIJAET ISSN: 22311963

IMPLEMENTATION OF TIME EFFICIENT SYSTEM FOR
MEDIAN FILTER USING NIOS Il PROCESSOR

Tanushree Selokartand Narendra G. Bawane?
1. 2Department of Electronics Engineering, R.T.M.N. University, Nagpur, India

ABSTRACT

This paper is intended to develop an operative part of filtering to reduce time using Altera DE2 Cyclone Il
board with Altera Nios Il processor. 8-bit grayscale bitmaps can be chosen to be used in image processing and
make a time efficient processing. JTAG is used for serial communication to the Nios Il processor for processing,
and receives the processed results from Nios Il processor to display the results. The algorithm is used to
develop in VHDL and c¢ code to implement it in the project. In this project NIOS Il processor is selected as soft
core processor which is commercial processor and Median Filter Algorithm is taken under the case study.
Algorithm implemented by two different ways: software and co-design. NIOS Il system is generated using SOPC
builder. Programming has been done in C and NIOS Il IDE is used to integrate the system. Algorithm is
implemented separately using Custom Hardware to improve the performance on CYCLONE Il FPGA. We are
using VHDL code of the algorithm and processing it in Nios Il processor to get a time efficient system.

KEYWORDS: Co-Design, image processing, Custom Hardware, NIOS Il processor.

l. INTRODUCTION

In last few decades, embedded systems have experienced an accelerating growth both in computing
power and scope of their possible applications. Moreover the designing procedure for embedded
system also changed immensely. As the application demands goes on increasing with the time the
complexity of the embedded system is waxing. Combination of software and hardware in design leads
to improve the system performance such approach is known as Co-Design.

1.1. Co-design

Hardware/software co-design is the main technique used in the thesis. It can be defined as the
cooperative design of hardware and software. The aim of co-design is to abridge the time-to-market
while reducing the design effort and costs of the designed products [1].

Co-design improves the performance of the system. We are going to generate system, for this purpose
we have taken an algorithm to make the performance enhance system [2,3]. Programming will be
done in C and NIOS Il IDE will be used to integrate the system. The soft core processor used is NIOS
1.

We will be using co-design methodology as we are in need of software and hardware description of an
embedded system. “Co-Design is a design methodology supporting the concurrent development of
hardware and software in order to achieve system functionality and performance goals. In particular,
Co-Design often refers to design activities prior to the partitioning into Hardware and Software and
the activity of design partitioning itself’[4]. Figurel shows general flow of the co-design which
includes the software and hardware part which are being designed simultaneously and being worked
simultaneously as they are being needed in the project to get worked.

The design flow of the general co-design approach is depicted in figure 1

Stepl: The co-design process starts with specifying the system behaviour at the system level.

Step 2: After this, a pure software system will be developed to verify all algorithms.

Step 3: Performance analysis will be performed to find out the system bottlenecks.

1409 | Vol. 7, Issue 5, pp. 1409-1419

International Journal of Advances in Engineering & Technology, Nov., 2014.
OIJAET ISSN: 22311963

Step 4: The hardware/software partitioning phase a plan will be made to determine which parts will
realized by hardware and which parts will be realized by software. Obviously, some system
bottlenecks will be replaced by hardware to improve the performance.
Step 5: Based on the results of step 4, hardware and software parts will be designed respectively.
Step 6: Co-simulation. At this step, the completed hardware and software parts will be integrated
together and performance analysis will be performed.
Step 7: If the performance meets the requirements, the design can stop and if the Performance can’t
meet the requirements, new HW/SW partitioning and a new design.

REUSE DESIGN LIBRARIES AND DATABASE

r S N |
| Primarily VIRTUAL PROTOTYPE Primarily |

| software hardware |

-
HW | HW
\J pesich [P0 Fae] ¥
| SYSTEM ! FUNCTION HW & ' : I INTEG. |
| DEF. JI_)" DESIGN [] sw |_&TEST _ |
PART. r |
SW W
HW & SW o
CODESIGN DESIGN [™1 CODE |
¥ R

Partitioning
& Codesign

Figure 1.Co-design flow[4]

1.2.Motivation

In order to enhance the performance of the system, Co-design method is frequently used. In process of
making an easier explore design tradeoffs, continual verification throughout the design cycle, mutual
influence of both HW and SW early in the design cycle, partitioning (Co-design) is the only way to
get all this features[4].The advanced ASIC and FPGA technologies facilitate the integration of
complex Systems on a Chip (SoC). The use of different Co-design methods is application specific. In
our project work we required an opague and fast system[1]. The Nios Il soft-core processor have the
highest operating frequency it also allows reuse of code and highly configurable. These esteem
features motivate implementation using Co-design with NIOS 11 soft core processor and study the
performance parameters.

1.3.Aim And Objective

The objective of our project is
1. To design the median filter algorithm in VHDL and C.
2. To design the system for implementing of the algorithm.
3. Partitioning using co-design methodology by custom hardware to get the time efficient
system.

Il. METHODOLOGY: MEDIAN FILTER ALGORITHM

Median filter is a spatial filtering operation, so it uses a 2-D mask that is applied to each pixel in the
input image. It is used to remove defects and noise from pictures. Median filter is much less sensitive
than the mean to extreme values (called outliers), therefore it is better without reducing the sharpness
of the image and edge preserving nature. To apply the mask means to centre it in a pixel, evaluating
the covered pixel brightness and determining which brightness value is the median value. The
algorithm is: every pixel from the picture to be filtered is replaced by the median value of the
neighbouring pixels[1]. The picture is thus transformed by the median filter by another picture that
has exactly the same size. For every pixel P of the input picture we first create a list of the 9 (3x3)

1410 | Vol. 7, Issue 5, pp. 1409-1419

International Journal of Advances in Engineering & Technology, Nov., 2014.
OIJAET ISSN: 22311963

pixels surrounding P. The 9 pixels are then sorted. The median value is the value located at the center
of the sorted list. The pixel P in the filtered picture takes this median value. In our example the
pictures are grayscale pictures, 8 bits per pixel. The pixel values are between 0 (black) and 255
(white). In the last step, this module will be integrated into FPGA boards together a Nios 11 CPU.

The median value is determined by placing the brightness in ascending order and selecting the center
value. The obtained median value will be the value for that pixel in the output image. The oldest
sample is discarded, a new sample acquired, and the calculation repeats.

N) e v e R

I T T T Y- T PRSP |

12133151617 ----I.—L 18
L] 34

2 PR e e R —123| 04 [247 45

3 [3,1]32/33]3.3(3,5)36]3,7| - --- BL| 78

a |a0]a2]a3)aala5]a6]a7|---- b 78|34 |45 | — | 94 | —3m
o =y 103

S PASZSARCSOANT " B 1207[103] 18 122

6 |6,1]6,2/6,36.4/6,5|66[67—%; —— 207

7 {7,1|7.2|173(73|7.517.6/7.7| ---- L 247

Figure 2. An example of the median filter application, as in this case, habitually a 3x3 median filter is used[9].

Let [X, Y] be the pixel located at row X, column Y of a picture. The value of pixel [4, 5] in the
filtered picture is computed from the 3x3 neighbourhood of the pixel [4, 5] of the source picture, that
is: [3]

The list of pixels: {[3,4],[3,5].[3,6].[4,4],[4,5].[4,6],[5.,4].[5.,5].[5,6]}.

The list of the pixel values: {122, 94, 247, 78, 34, 45, 207, 103, 18}.

The sorted list is {18, 34, 45, 78, 94, 103, 122, 207, 247}.

The median value is 94 so the value of the pixel in the filtered picture will be 94.

I1l. REsSULTS: IMPLEMENTATION OF ALGORITHM ON FpPGA UsING Nios Il
PROCESSOR

Algorithm will be implemented on CYCLON Il FPGA using NIOS Il Processor and the software used
are Quartus Il and NIOS 1l IDE.

NIOS Il is a synthesizable VHDL model of a 32-bit processor compliant with the SPARC V8
architecture. The processor is highly flexible in any design configuration, and mainly suitable for
system-on-a-chip (SOC) designs. The NIOS Il IDE have GNU compiler with C/C++ license,
Following are some features of NIOS 1l Soft core Processor.

» Soft IP Core : A soft-core processor is a microprocessor fully described in software, usually in an
HDL, which can be synthesized in programmable hardware, such as FPGAs.

Reduced Instruction Set Computer (RISC)8/16/32-bits memory controller for external PROM and
SRAM.

No pipeline, 5 or 6 stages pipeline configurations.

It has full 32-bit instruction set.

32 general-purpose registers.

For more interrupt sources it has external interrupt controller interface.

Single-instruction 32 x 32 multiply and divide producing a 32-bit result.

For computing 64-bit and 128-bit products dedicated instructions of multiplication is given.
Floating-point Custom instructions for single-precision floating-point operations.

VVVVVVY 'V

1411 | Vol. 7, Issue 5, pp. 1409-1419

International Journal of Advances in Engineering & Technology, Nov., 2014.
OIJAET ISSN: 22311963

3.1. Design Steps For Implementation

The system components required for Software/Hardware implementation of Median filter algorithm
on FPGA in QUARTUS Il software.

» NIOS Il Processor

» JTAG UART

» SRAM MEMORY

» Input ,Output GPIO’S

» Performance Counter

SOPC Builder automatically generates the interconnect logic to integrate the components in the
hardware system. It can be selected from a list of standard processor cores and components provided
with the Nios Il EDS [5]. Following window shows the selection of components required and its

system generation.

L. Altera SOPC Builder - nios_

Fie Edt Modue System View Tools Niosl Hep
System Corterts | System Generation
711 Aktera SOPC Buider TECE ErE S
@ Nios I Processor Device Famiy: Cyclone I - iz
- Bridges and Adapters == i o
Interface Protacols CLOCK_50 External s0.0 (=225
Legacy Componerts N
- Memories and Memory Cortrollers
& Peripherals
L Use Comne... Module Name Description Clock Base End
University Program
i o DEBoards Extemal Interface & cpu Ihios Il Processor
Audio & Video instruction_master \Avalon Memory Mapped Master CLOCK_50
Bricges data_master \Avalon Memory Mapped Master IRG O
Communications jtag_debug_module \Avalon Memory Mapped Slave 0x00100300 0x00
Generic 10 O sram SRAM/SSRAM Cortraller
£ Memory avalon_sram_slave Avalon Memory Mapped Stave ICLOCK 50 0x00030000 |0:00
> SRAMISSRAM Cortrolier o pio_in PIO (Paralel 10)
us8 st Avalon Memory Mapped Stave CLOCK_50 0200101040 |0x00.
Videa and Image Processing @ pio_out PIO (Paraliel 10)
sl Avalon Memory Mapped Slave ICLOCK 50 ox00101050 000
B jtag_uart UTAG UART
avalon_ftag_slave Avalon Memory Mapped Slave CLOCK 50 ox00101060 (0:00.
B sysid System ID Peripheral
cortrol_slave Avalon Memory Mapped Siave lcLOCK 50 0x00101063 (000
B performance_counter_0 Performance Courter Unit
cortrol_slave |Avalon Memory Mapped Siave lcLOCK 50 0x00101008 |00
N « i | »
New... | [Edt Add Remove Edit A Move Up ¥ Move Down

., Warning: pio_in: PIO inputs are not harcwired in test bench. Lindefined values will be read from PIO inputs during simulation

=

Figure 3. System contents in SOPC Builder

In the Figure 3, the components required to build a system are taken in SOPC Builder.

|||File Edit Module System View Tools Miosll Help

| System Corterts || System Generation t

Options
System madule logic wil e created in VHDL

[Simulation. Create project simulator files. | Run Simulstor

Nios Il Tools

hios Il IDE

Info: programming logie devices manufactured by Akera and sold by
Info: Attera or fts authorized distrioutors. Please refer to the
Info: appicable agresment for further detais.
Info: Processing started: Thu Jul 03 17:06:46 2014
(@ Info: Command: quartus_sh -t nios_sys_sstup_quartus tcl
(@ Info: Evaluation of Tcl script rios_sys_setup_suartus cl was successful
(@ Info: Quartus 1| Shell was successtul. 0 errors, 0 warrings
Info: Peak virtusl memory: 92 megabytes
Infa: Processing endec: Thu Jul 03 17:06:45 2014
Info; Elapsed time: 00:00:00
Info: Tatal CPU time (on all processors): 00:00:00
#2014.07.0317.06:46 (*) Completed generation for system: nios_sys
#2014.07.0317.06:46 (*) THE FOLLOWING SYSTEM ITEMS HAVE BEEN GENERATED:
SOPC Builder database : C:faltera31 iquartus imedian_softinios_sys ptf
System HDL Madie|: C:fatteralit Jquartus median_softinios_sys vhd

System Generation Script : C:fakera1 lquartusimedian_softinios_sys_generation_script

#2014.07.03 17:06:46 (*) SUCCESS: S'YSTEM GENERATION COMPLETED.
(@ Info: System generation was successful
« [

£, Warning: pio_in: FIO inputs are not hardwired in test hench. Undefined values will be read from FIO inputs during simulation

Info: Agrezment, or other applicable license agreement, including
Info: without limitation, that your use is for the sole purpose of

BT

Figure 4. System Generation without custom hardware

Vol. 7, Issue 5, pp. 1409-1419

International Journal of Advances in Engineering & Technology, Nov., 2014.
OIJAET ISSN: 22311963

In Figure 4, the successful generation of the system is shown.

@8 Quartus I Ci/altera/81/quartus)

] File Edit View Project Assignments Processing Tools Window Help _ =)=
DEedd & median_soft -3 s EE S P s D |88 e
Project Navigator . x

T8 median_soft bdf

cpu_ftag_debug_module_tok vhd B =
cpu_jiag_debug_module_wrapper vhd ==

cpu_mut_cellvhd
cpu_oci_test_benchvhd kA
cpu_test_bench vhd o0

ftag_uart vhd 1"

¢ rios_sys whd e
performance_courter_0vhd F

_pio_in[1..0)

pio_invhd
& pio_outvhd 3

B,
e

b0 sramv

=
E
i sysidvhd =]
-

B nios_sys.ip
583 cpusde

B Cvaltera/81/quartus/sopc_builder/model/ib/

- = [nedian_soft b
< [L3 I:I o
&y Hierarchy | B Files | &7 Design Units N
Tasks “x
Flow: [Full Design |

Task B -
] Start Project
(2] Advisars
E 3 Create Desian
+-[_] Create New Design File
< [llli - *

- %

Type |Message |

ages

System | Frocessing i Extialnfo y Info , Waining }, CiiicalWarning J, Entor , Suppiessed jy Flag

& rerse 2| ¥ [Foon o
Figure 5. NIOS System without custom hardware Block Diagram File view.

In Figure 5, integration of SOPC Builder with Quartus Software is shown. In this BDF the pin
assignment is done by importing the pin assignment of Cyclone Il (EP2C35F672C6) FPGA.

The generation of system in hardware is complete. Here the connection between Cyclone 1l FPGA
and host computer is done by cable USB-Blaster. After successful hardware generation time limited
file is generated.

3.2. Software flow using NIOS Il System

The results for median filter using N1OS I1 IDE in c-code has given below. After Generation of
system in Quartus Il software the .sopcinfo file is called up in NIOS II IDE as a hardware platform.
The new project is made in NIOS 1l IDE, then the project for C-code is chosen in which the
“hello_world” template is selected. The C-code for Median filter Algorithm is written in
Hello_world.c file. Then the project is build using Build Project command. After the project build the
code will be implemented on CYCLONE Il (EP2C35F672C6) FPGA using command Run as NIOS
Il Hardware. After all these steps the output will be seen in NIOS 11 Console Window([6].

B Nios 11 C/C++ - medianfilter.c - Nios I
File Edit Navigate Search Project Tools Run Window Help

(1 W @ 8B8vEvG- B0 ™4 - - - - - £ ([NiosHC/C++

1B Nios 1 C/Co+ Projects 2 [medianfilter.c &2 11/ B2 Outline al
#include<stdio.h> = acdbacicont -

alters.components SAsEine plo S Qxglibioe © Make Targets

medianfilter

< Binaries Problems () Console £3%, Properties L] x 5B [HO -~]

Includes medianfilter Nios Il HW configuration [Nios Il Hardware] Nios Il Terminal Window (6/30/14 4:54 PM)

& Debug

B floating_pointh

¢ floating_point Cl.c Enter the no. of elements to be sorted :

§ floating_point_SW.c
¢ medianfilter.c

® aitera_avalon_performance_counter.h

H fioath G

™ floating_point.h

 math.h

 stdioh

& stdiib.h

4 sys/alt_irgh

1 systemh

pio_in

pio_out

o main

application.stf

readme.tit
medianfilter_syslib [nios_sys)

er Report--
826 seconds (61413 clock-cycles)

Figure 6.Nios Il Processor Software Flow

1413 | Vol. 7, Issue 5, pp. 1409-1419

International Journal of Advances in Engineering & Technology, Nov., 2014.
OIJAET ISSN: 22311963

In Figure 6, the output of implementation of Algorithm on FPGA is shown with clock cycles and time
required for execution of Algorithm. The table no.1 shows the clock cycles required for software
flow.

Table 1. Clock Cycles for execution of Algorithm in software

Median filter Hardware required in | Clock Cycles Time Required
Algorithm percentage
Software 3110/33216 (9%) 61413clk cycles 0.00122826 sec

IV. REesuLTS: IMPLEMENTATION OF ALGORITHM WITH CusTOM
HARDWARE ON FPGA USING N10S Il PROCESSOR

In hardware implementation, interfacing of median filter and Nios Il processor is done. While
designing a system that includesaNios 1l embedded processor, we can accelerate time-critical software
algorithms by interfacing custom hardware to the Nios Il processor.

4.1. Design Steps For The Hardware Implementation

After software implementation same procedure has to be followed with some changes in system.

1. For hardware implementation system is generated in SOPC builder.

2. Implementation of Algorithm is done on FPGA using NIOS |1 IDE.

3. Inputs are being provided from the FPGA board and we run it in NIOS |1 IDE.

4. The program calculates the processing time and throughput for each of the versions, to demonstrate
the improved efficiency of a custom hardware compared to software implementation.

Up to 25 DMIPS
1200-1400 LE=s

Memory. | sram - |2ffset g0 | 0x00080000

uuuuuuuuuu

sctor: Memory: [sram - | Offzet: [oxzo

MR wrhen using an aperating sy=tem that explictly supparts an ML
xception \Vector: Memery Offset: (g0

[cancal il Fack | [nimer = 1 [Fiish |

Figure 7.Nios Il Processor is selected as before for Custom Hardware Flow.

Figure 7 shows selection of in NIOS Il Processor. The inclusion of floating point hardware in
processor keeping all other peripherals same, it leads to increase in hardware. It maps the memory
location from SRAM interface in SOPC builder. For data transfer it uses the 32-bit internal registers if
Nios Il processor[7].

1414 | Vol. 7, Issue 5, pp. 1409-1419

International Journal of Advances in Engineering & Technology, Nov., 2014.
OIJAET ISSN: 22311963

newhF inst
i‘;‘l{;- ;:xee: nios_systemoinstd
SW1 4- e SRAM_GE_M_trom_me_stam_0| [———[I=SRAM_CE_N
SWI13) ——— |when SRAM_LE_M_from_the_sram O |———[NESRAM LB M
SW11) . I SRAN_CE M o e _smae 0| [~ [RCRAN OE N
E.W[--:j=::|_ =2l i SA_UB_A_tom_me_sesmo| | mRan 1B N
SWIT] =] - Armcmen SRAM_WE_M_tram_te_sram 0| —— [NNRSRAM_WE_N
SWE] : - - ouri_port_rom_fhe_plo_oud7.0| fre———) FHE[T. 0]
SWIE] SRAM_ADOR_rom_me_sram_0{17.0]| [IS RAM_ADDR[17..0]
SW4] e SRAM_DS_So_and_trem_the_sram_015.0]| RS RAM_DO{15..0]
B3] :
SWizZ]
SW1] - ECR]T..0)
SWID]
CLOCK_Z0 -
HEY 0]

Figure 8. RTL view of Custom Hardware

Figure 8 shows the RTL of Custom Hardware. The Nios Il embedded Design Suite (EDS) generates a
macro in the system header file, system.h. You can use the macro directly in your C or C++
application code, and you do not need to program assembly code to access custom hardware. Software
can also invoke custom instructions in Nios Il processor assembly language. Custom Hardware is
added as floating point hardware in NIOS Il processor. It contains following files[8].
floating_point.c— main program

floating_point.h—global definitions

floating_point_Cl.c—functions to exercise the floating-point custom instructions
floating_point_SW.c—functions to exercise the software-implemented floating-point operations.

4.2. Results Of Median Filter Algorithm Using Custom Hardware

The System is generated in SOPC Builder. In this system the custom hardware is added as floating
point hardware.

. Altera SOPC Builder - nios_system.sopc (Chalterz

||Fiie Edt Module System View Tools Miosl Help
System Cortents | System Genration|
] Attera SOPC Buildler TRTE: ST
© Hios Il Processer Device Family:| Cyclone I = name Source MHz gl
Bridges and Adapters
Interface Protocals CLOCK_50 External 50.0 Hemovs
Legacy Componerts
ft} Memaries and Memory Cortroller
[Peripherals
PLL Use Comne... Module Name Description Clock Base Enel RO
Universtty Program
UsB B cpu_d INios Il Processor
Video and Image Processing instruction_master |\Avalon Memory Mapped Master (CLOCK_50
data_master |Avalon Memory Mapped Master 182 0 183 31
b ftag_debug_mockie |Avalon Memory Mapped Slave 0x00100800 |0x00100¢£¢
. B sram_0 [SRAMISSRAM Contraller
avalon_sram_slave |avalon Memory Mapned Siave CLOCK_50 000030000 |0x000££££E
Bl Jtag_uart_0 WTAG UART
avalon_ftag_siave |Avalon Memory Mapped Slave CLOCK_50 000101060 0300101057]
i FIO (Paralel 110)
1 |Avalon Memory Mapped Slave (CLOCK_50 0200101040 |0x0010104¢
B pio_out IFIO (Paraliel 10)
s1 \Avalon Memory Mapped Stave (CLOCK_50 0200101050 0x0010105¢
B sysid System ID Peripheral
cortrol_slave |Avalon Memory Mapped Slave CLOCK_50 000101068 |0x0010106¢
i I | + El performance_counter 0 |[Performance Counter Unit
Y cortrol_slave |Avalon Memory Mapped Stave (CLOCK_50 000101000 |0x0010103 £
New. Edit Add. Remove | [Fat_ | [A Move Up] [¥ Move Down] [AddressMap | [Fiter

+, Warning: pio_in: PIO inputs are not hardwired in test bench. Undefined values will be read from PIO inputs during simulation

=

Figure 9. System for custom hardware flow in SOPC Builder

1415 | Vol. 7, Issue 5, pp. 1409-1419

International Journal of Advances in Engineering & Technology, Nov., 2014.
OIJAET ISSN: 22311963

Altera SOPC Builder - nios_system.sopc (Chaltera\81\quartus\median_custom\nios_system.sopt
File Edit Mocule System View Tools Miosll Help

[System Cortents | System Generation ‘

Opticns
Systam madule logic wil b created in VHDL il

|] Simulation. Create project simulator files. | Run Simulator

Nios Il Tools

Nios Il IDE

Info: Agreement, or other applicable license agreement, including,

Info: without limitation, that your use is for the sole purpose of
Info: programming logic devices manufactured by Atera and sold by
Info: Altera or fts authorized distributors. Please refer to the
Info: applicable agraement for further detais.
Info: Processing startect Thu Jul 03 17:31:45 2014
(@ Info: Command: quartus_sh -t nios_system_setup_guartus.cl
(@ Info: Evaluation of Tcl script nios_system_setup_quartus tcl was successful
(@ Info: Quartus | Shell was successful. 0 errors, 0 warrings
Info: Peak virtusl memory: 92 megabytes
Info: Processing ended: Thu Jul 03 17:31:45 2014
Info: Elapsed time: 00:00:00
Info: Tatal CPU time (on all processors): 00:00:00
#2014.07.0317:31:46 (*) Completed generation for system: nios_system
#2014.07.0317:31:46 () THE FOLLOWING SYSTEM ITEMS HAVE BEEN GENERATED:
SOPC Builder database : C:/atieraSt fquartus inzdian_custominios_system ptf
System HDL Mode|: C:/atteraia jquartus median_custominios_system.vhd
System Generation Seript : C:/akeraS1 luartusimedian_custominios_system_generation_script
#2014.07.0317:31:46 (*) SUCCESS: SYSTEM GENERATION COMPLETED.
e — =)
<L v

., Warning: pio_in: PIO inpuits are not hardwired in test bench. Undefined values will be read from PIO inputs during simulation

il

Figure 10. System Generation for Custom Hardware

Figure 9 and Figure 10 shows the system contents and generation of system in SOPC Builder. After
generation of system in SOPC, the pin assignment and compilation is done in QUARTUS II.

i I
PIN PIN_AE4
Pil_ACI1
PIN_ADS ||
PIN_AES | |
PIN_ADT0 | -
PIN_AFS [-
PIN_AETD
AATT |
RakEml|
RET_ |
AT
AEE |
_AFe ||

resoatal7..0) in_port_to_the_pio_in[7..0]

Figure 11. NIOS System with custom hardware Block Diagram File view

In Quartus 11, The pin assignment is done by importing the file of CYCLONE Il (EP2C35F672C6)
FPGA. In the figure 11 the address lines from SRAM memory are assigned to custom hardware. After
the successful compilation of system, hardware generation in CYCLONE Il FPGA is done and time
limited file is generated. After hardware generation of system using CYCLONE Il FPGA, the
algorithm is implemented in NIOS Il IDE. We have to follow same steps as stated with addition of
Custom Hardware files in NIOS Il IDE Project.

After generating hello_world.cfile, we have to add custom instruction files floating_point.c,
floating_point.h, floating_point_CI.c and floating_point_SW.cin the project. Then the project is build
by command Build Project. While building a project, a macro function system.h is generated which
connects the C-code of algorithm to Custom hardware. After successful build of project the Algorithm
is implemented on CYCLONE Il (EP2C35F672C6) FPGA. This implementation is done by command
Run as NIOS Il Hardware. After execution of this command the result is shown in NIOS Il console
window.

1416 | Vol. 7, Issue 5, pp. 1409-1419

International Journal of Advances in Engineering & Technology, Nov., 2014.
OIJAET ISSN: 22311963

File Edit Navigate Search Project Tools Run Window Help
o .4 =7 > - v ¢ v 6 - *\‘; - 0 - 1‘. - ‘Q y - - - - - ‘ iNiosﬂc/C.o
Sl han o

1B Nios 1 C/C++ Projects 2 0/ 8 Outline
An outline is not available.

(> Debug int main(void)
3-[N floating_point.h {
g floating_point_CLc
< floating_point_SW.c

E_COUNTER_O_BASE) ; % Make Targets i)

¢ median_custom.c X
G (PERFORMANCE_COUNTER_O_BASE) ;
® &

application.stf
readme.txt

=S
%25 median_custom
4125 median_custom _syslib [nios_system] © X

415 median_custom_syslib

ue is %d",median):
G (PERFORMANCE_COUNTER_0_BASE) ;

):
_print_formatted report ((void *)PERFORMANCE_COUNTER 0 BASE, /* defined in "system.h" */

Problems |) Console &2 " Properties] x 68| (28 v 9 ~
median_custom Nios [l HW configuration [Nios Il Hardware] Nios I Terminal Window (6/30/14 4:39 PM)

nios2-terminal: (Use the IDE stop button or Ctrl-C to terminate)

hello

The median

--Perfon Report--
Total Time: 7378 seconds (8689 clock-cycles)

| Section I % | Time (sec)| Time (clocks)|Occurrences

/median_custom

Figure 12. Median Filter result with Custom Hardware

In Figure 12, the output of implementation of Algorithm on FPGA is shown with clock cycles and
time required for execution of Algorithm. The table 2 shows the clock cycles required with custom
hardware.

Table 2. Clock Cycles for execution of Algorithm in Hardware

Algorithm Hardware required in Clock Cycles Time Required
Percentage
Custom Hardware 3238/33216 (10%) 8689 clk cycles 0.00017378 sec

V. CONCLUSION

Median Filter Algorithm considered as a case study is implemented using the hardware / software co-
design methodology. Hardware / software co-design methodology implementation gives an optimized
design of the algorithm. Algorithm is implemented on CYCLONE Il FPGA based around NIOS II
processor.

85% efficiency is achieved by using custom hardware. Also, when Algorithm is implemented with
NIOS 11 system using Custom Hardware, speed of the Median filter algorithm is increased but area
required for the implementation is also increased.

5.1. Synthesis Report

After execution of Algorithm on FPGA with and without custom hardware, their comparison is done
for parameters clock cycles. From the table no. 1 and table no. 2 the comparison is done shown in
table3.

Table 3. CPU Clock cycles and time required

Items Clock Cycles Time Required
Algorithm Without Custom Hardware 61413 0.00122826 Sec
Algorithm With Custom Hardware 8689 0.00017378 Sec

1417 | Vol. 7, Issue 5, pp. 1409-1419

International Journal of Advances in Engineering & Technology, Nov., 2014.
OIJAET ISSN: 22311963

From the performance analysis results of clock cycles and time required for execution in software is
more as compared with execution of algorithm in hardware. The system which is generated using
SOPC Builder is compiled in Quartus Il software. The hardware required for generation of system is
depending upon the LE’s used in CYCLONE Il (EP2C35F672C6) FPGA. The comparison in
hardware change is shown in table 4.

Table 4. Comparison of compilation report

Items Total Without Custom With Custom
Count Hardware Hardware
Total Logic Elements 33216 3110(9%) 3238(10%)
Total Combinational Functions 33216 2934(9%) 3044(9%)
Dedicated Logic Registers 33216 1915(6%) 2018(6%)
Total Pins 475 61(13%) 75(16%)
Total Memory Bits 483840 46208(10%) 46208(10%)
Embedded multipliers 9-bit Elements 70 4(6%) 4(6%)

The above table shows the comparison between the software and hardware systems i.e. system with
and without custom hardware. It shows that inclusion of custom hardware increases the hardware
which gives better result in terms of clock cycles and require for execution of algorithm.

VI. FUTURE SCOPE

As the selected Processor is soft core processor, enabling change of hardware according to the
application. Optimizations in area, required for Median filter Algorithm; can be obtained by designing
various optimization approaches for the various blocks of the algorithm. Here, Median filter algorithm
is accelerated using custom hardware with NIOS |1 processor, in future acceleration image processing
can be done by median filter. It can also work with the custom instruction.

REFERENCES

[1] G. Bosman “A Survey of Co-Design Ideas and Methodologies™, Vriji University, Amsterdam, July, 2005.

[2] “Nios II Processor Handbook”, Altera Corporation, 2007.

[3] Jason G. Tong, Ian D. L. Anderson and Mohammed A. S. Khalid, “Soft-Core Processors for Embedded
Systems” University of Windsor, The 18th International Conference on Microelectronics (ICM) 2006.

[4] “Rolf Ernst “Co design of Embedded Systems: Status and Trends”, Braunschweig University of
Technology, IEEE Design & Test of computers, April-June 1998

[5] Ery Arias-Castro and David L. Donoho, “Does Median Filtering truly preserve edges better than linear
filtering” University of California, San Diego and Stanford University, The Annals of Statistics,2009, Vol.
37, No. 3, 1172-1206.

[6] Altera Corporation, “NIOS II Software Developer’s Handbook™,2011.

[7] Nallaperumal.K,Varghese.J, Saudia.S, Annam.S, Kumar.P, “Iterative Adaptive Switching Median Filter”,
Industrial Electronics and Applications, Singapore, 1ST IEEE Conference onAltera Corporation, “NIOS 1I
Processor Reference Handbook,”2010.

[8] AnisBoudabous, Ahmed Ben Atitallah, LazharKhriji, Patrice Kadionik, and NouriMasmoudi,
“HW/SWDesign-Based Implementation of Vector Median Rational Hybrid Filter”, Sultan Qaboos
University, Oman, University Bordeaux |, France, The International Arab Journal of Information
Technology, Vol. 7, No. 1, January 2010.

[9] Chen Kah Yee, “Median Filter Using NIOS II Processor With Sort Hardware Accelerator”, University
Technology Malaysia, May 2009.

1418 | Vol. 7, Issue 5, pp. 1409-1419

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4025693

International Journal of Advances in Engineering & Technology, Nov., 2014.
OIJAET ISSN: 22311963

AUTHOR BIOGRAPHY

Tanushree Selokar Date of Birth: 27-11-1989Education: M.Tech. in Electronics from
Nagpur University, Nagpur India B.E in Electronics from Nagpur University, Umrer, India

Narendra G Bawane, M. Tech. (IIT, Delhi), Ph. D. (VNIT)

He has total teaching experience of more than 23 years at graduate and Post-graduate level.
His areas of interest are Artificial Neural Network (ANN), Embedded system, Fuzzy logic
system, Wavelet analysis, Hybrid intelligence, Image processing & Emotion in speech and
facial recognition, Biomedical engineering etc.

1419 | Vol. 7, Issue 5, pp. 1409-1419

