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ABSTRACT 
It is well known that traditional formulations of topology optimization that make use of finite element method 

suffer from instabilities such as checkerboarding. This checkerboarding is generally due to mathematical 

instability, commonly observed solution of minimum compliance problems. If checkerboarding problem is 

controlled in an efficient way we can obtain more accurate and highly optimized results in Topology 

Optimization. This paper reviews the various available checkerboarding control methods available and presents 

a comparison of checkerboarding control methods. As a designer one must know which control method should 

be applied to get desired result also insight into the checkerboarding opens a new field for developing more 

able algorithms for controlling checkerboarding problem.  
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I. INTRODUCTION 

Nowadays, there are commercial programs to solve only simple topology optimization problem. 

When developing a new computer code, many computational and theoretical issues appear. The most 

common are the following: a) checkerboard patterns; b) mesh dependency; c) local minima; and d) 

singular topologies (for stress constrained problems). 

A checkerboard is defined as a periodic pattern of high and low values of Pseudo-densities, 𝑥𝑗 

arranged in a fashion of checkerboards. This behaviour is undesirable as it is the result of a numerical 

instability and does not correspond to an optimal distribution of material. The checkerboards possess 

artificially high stiffness, and also such a configuration would be difficult to manufacture. 

Checkerboard patterns are formed due to bad numerical modelling of the stiffness of the 

checkerboards 

 

 

Figure 1: The checkerboard pattern in simply supported beam example [Sigmund and Petersson, 1998] 

II. METHODS TO OVERCOME CHECKERBOARDING 

To overcome the checkerboarding at least four types of methods are proposed: Checkerboarding is 

still a area of constant research to develop more and more efficient algorithms and method to improve 

Topology Optimization. 

2.1 Use of high order finite element 
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Sigmund and Petersson [1998] suggested the use of higher order finite elements for the modelling of 

the structure so that the stiffness properties of checkerboard patterns can be accurately calculated and 

checkerboards are avoided. Use of linear shape function finite elements for descritization of 

structures, gives rise to generation of checkerboard patterns. Checkerboards are typically prevented 

when using 8 or 9-node quadrilaterals for the displacements in combination with an element wise 

constant discretization of density. The use of higher order finite elements in topology design results in 

a substantial increase in CPU-time (even though this is not today a serious problem for 2-D 

problems). Eight node elements provides more accurate results for mixed (quadrilateral-triangular) 

automatic meshes and can tolerate irregular shapes without as much loss of accuracy. The 8-node 

elements have compatible displacement shapes and are well suited to model curved boundaries. 

The 8-node element is defined by eight nodes having two degrees of freedom at each node: 

translations in the nodal x and y directions. The element may be used as a plane element or as an 

axisymmetric element. The element has plasticity, creep, swelling, stress stiffening, large deflection, 

and large strain capabilities 

                                            
                                      (a)                                                                               (b)     

Figure 2: (a) The topology optimization result using four-node element, (b) The topology optimization result 

using eight-node element 

 

2.2 Perimeter control technique 
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Figure 3: Smaller holes increase the perimeter, for a fixed volume. V is the volume and P is the perimeter of 

internal holes. 

The perimeter of a mechanical element Ω𝑚𝑎𝑡 is, vaguely speaking, the sum of the lengths/areas of all 

inner and outer boundaries. Constraining the perimeter clearly limits the number of holes that can 

appear in the domain and existence of solutions to the perimeter controlled topology optimization is 

actually assured for both the discrete 0-1setting and the interpolated version using SIMP Also, it has 

been implemented for both situations and for 2-D as well as 3-D problems. For the SIMP method, one 

can impose a constraint that mimics such a perimeter bound in the form of an upper bound on the total 

variation, TV (ρ), of the density ρ. In case the function ρ is smooth, the total variation constraint is a 

𝐿1 bound on its gradient 

     TV(ρ) =∫ ‖𝛻𝜌‖𝑑𝑥 ≤ 𝑃∗
𝑅𝑛                                                                                      2.2.1 

For a 0-1 design, the total variation of ρ coincides with the perimeter of Ω𝑚𝑎𝑡  when ρ is l in Ω𝑚𝑎𝑡 

and 0 elsewhere. In this case the constraint is expressed as 

 

TV (ρ) = sup {∫ 𝜌div𝜑 𝑑𝑥 |𝜑𝜖𝐶𝑐
1

𝑅𝑁 (𝑅𝑛, 𝑅𝑛), ‖𝜑‖ ≤ 1} ≤ 𝑃∗                                                          2.2.2                                                 

 

Where  𝐶𝑐
1(𝑅𝑛, 𝑅𝑛) denotes compactly supported vector valued 𝐶1 functions. For an element wise 

constant finite element discretization of the density the total variation can in 2-D be calculated as  
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P = ∑ 𝑙𝑘(√〈𝜌〉𝑘
2 + 𝜖2 − 𝜖)𝐾

𝑘=1                                                                                2.2.3 

Where 〈𝜌〉𝑘  is the jump of material density through element interface k of length 𝑙𝑘 and K is the 

number of element interfaces (here one should also count interfaces at the boundary of the domain Ω 

— else there will be bias towards having material at the borders of Ω). The parameter ϵ is a small 

positive number which is used to convert the non-differentiable absolute value into a differentiable 

term. This expression is exactly the total variation of the element-wise constant density when ϵ = 0. 

2.3  Patch technique 

 

                        

                                  Ω        (a) Patch of four elements 𝑃𝑖𝑗, (2M columns and 2N rows) 

 

                                   
                           ɸ

𝑖𝑗
1                         ɸ

𝑖𝑗
2                        ɸ

𝑖𝑗
3                       ɸ

𝑖𝑗
4  

                                                           (b) Basic functions associated with 𝑃𝑖𝑗 
Figure 4:  Patches and basis functions used for checkerboard control. 

In order to save CPU-time, but still obtain checkerboard free designs, it has been suggested to employ 

a patch technique. This technique has in practical tests shown an ability to damp the appearance of 

checkerboards. The strategy controls the formation of checkerboards in meshes of 4-node 

quadrilateral displacement elements coupled with constant material properties within each element. 

Thus one maintains the use of low order elements. However, the end result is the introduction of some 

type of element with a higher number of nodes, as the method in effect results in a "super-element" 

for the density and displacement functions in 4 neighboring elements. In what follows we will assume 

that the design domain ft is rectangular. It is discretized using a uniform mesh of square, 4-node iso-

parametric element 𝐾𝑖𝑗, 𝑖 = 1, … ,2𝑀, 𝑗 = 1 … ,2𝑁 where 2M and 2N are the (even) number of 

elements per side. Consider now, for odd i and j, a patch 𝑃𝑖𝑗 of four contiguous elements 𝐾1 =

 𝐾𝑖,𝑗, 𝐾2 =  𝐾𝑖+1, 𝐾3 = 𝐾𝑖,𝑗+1 and𝐾4 =  𝐾𝑖+1,𝑗+1, as shown in Fig. 4, i.e,  

𝑃𝑖𝑗 =  𝐾1𝑈𝐾2𝑈𝐾3𝑈𝐾4.                                                                      2.3.1 

Associated with 𝑃𝑖𝑗  we introduce basis functions ɸ
𝑖𝑗
1 , ɸ

𝑖𝑗
2 , ɸ

𝑖𝑗
3  𝑎𝑛𝑑 ɸ

𝑖𝑗
4  which take the values +1 in 

𝑃𝑖𝑗   according to the pattern shown in Fig. 4 and are zero outside𝑃𝑖𝑗. Here we note that: 

 — The functions {ɸ
𝑖𝑗
𝑘 } constitute an orthogonal basis, 

A "pure" checkerboard pattern is of the form 𝑢 = ∑ 𝑢𝑖𝑗ɸ
𝑖𝑗
4

𝑃𝑖𝑗
 suggests that in order to avoid the 

formation of checkerboard patterns we need to restrict ρ to lie within the more restricted, 

checkerboard-free space 

Ṽ = {𝑣|𝑣(𝑥) =  ∑ (𝑣𝑖𝑗
1 ɸ

𝑖𝑗
1 + 𝑣𝑖𝑗

2 ɸ
𝑖𝑗
2 + 𝑣𝑖𝑗

3 ɸ
𝑖𝑗
3 )𝑃𝑖𝑗

, (𝑣𝑖𝑗
1 , 𝑣𝑖𝑗

2 , 𝑣𝑖𝑗
3 )𝜖𝑅3}                              2.3.2                                                       

Where 𝑖 = 1,3, … 2𝑁 − 1, 𝑗 = 1,3, … 2𝑀 − 1 

This restriction on ρ links the four elements in a patch, and the amount of material in 𝐾1𝑈𝐾4 equals 

that of 𝐾2𝑈𝐾3 and each is half of the total volume of the patch. 
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2.4 The Poulsen scheme 

 

Figure 5:  A check for monotonicity along four paths around an interior node. 

 

A simple scheme to prevent checkerboard pattern and one-node connected hinges in topology 

optimization, was proposed by Poulsen. The scheme is particularly important to overcome one-node 

connected hinge that are often seen in topology optimization of compliant mechanism, since 

checkerboarding effects can of course be removed through the use of normal filters. By a one-node 

connected hinge it is understood that four elements surround a node, and only two opposing elements 

are filled with material, while the other two opposing elements are empty. These one-node connected 

hinges are of course also the blocks of checkerboard pattern. Here we define a non negative constraint 

function that should have value zero for the design to be free of checkerboard.  

Consider the patch of square elements in Fig. 5.  Defining the function 

m(x,y,z) = |𝑦 − 𝑥| + |𝑧 − 𝑦| + |𝑧 − 𝑥|                                                                      2.4.1 

that is zero if the sequence of real numbers x, y, z is monotonic (increasing, decreasing or constant) 

and strictly positive otherwise, we can determine that the patch is free of checkerboard patterns, if just 

one of the numbers m(a, b, d), m(a, c, d), m(b, a, c) or m(b, d, c) is zero. This can be in turn be 

expressed as the condition that the number 

h(a,b,c,d) = m(a,b,d)m(a,c,d)m(b,a,c)m(b,d,c)                                                                2.4.2                                                                       

is zero. A design defined by a density p that is element wise constant on a mesh of quadrilaterals with 

N interior nodes will thus be free of checkerboards if it satisfies the constraint 

∑ ℎ(𝜌𝑘,𝑎 , 𝜌𝑘,𝑏 , 𝜌𝑘,𝑐 , 𝜌𝑘,𝑑)𝑁
𝑘=1 = 0                                                                                2.4.3 

Where  𝜌𝑘,𝑒 , 𝑒 = 𝑎, 𝑏, 𝑐, 𝑑 is the material densities in the elements connected to the node k. This 

constraint can thus be added to our optimization problem to assure checkerboard free solutions. It can 

also be used to remove "artificial" hinges in mechanism design. As we have seen in other situations, 

an implementation using gradient based optimization techniques requires a replacement of the 

absolute value by a smooth substitute, for example |𝑥| ≃ √𝑥2 + 𝜖2 − 𝜖 with ϵ = 0.1. With this 

modification a sensitivity analysis of the constraint is straightforward, but rather tedious  

2.5 Filtering of sensitivities technique 

Filters are used to prevent checkerboarding by smoothening the stiffness in a fashion similar to the 

filtering of an image. Filtering meant that stiffness in a point e depends on the density 𝑥𝑒  in all points 

in the neighborhood of e. The method gives existence of solutions and convergence with refinement 

of FE mesh. Filtering the sensitivity information of the optimization problem is an efficient way to 

ensure mesh-independency. Filtering works by modifying the density sensitivity of a specific element 

based on weighted average of the element sensitivities in a fixed neighborhood. The scheme works by 

modifying the element sensitivity of the compliance as: 
𝜕ĉ

𝜕𝑥𝑒
=  

1

𝑥𝑒 ∑ Ĥ𝑖
𝑁
𝑖=1

 ∑ Ĥ𝑖𝑥𝑖
𝑁
𝑖=1

𝜕𝑐

𝜕𝑥𝑖
  ,                                                                         2.5.1 

Where N is the total number of element in the mesh and where the mesh-independent convolution 

operator (weight factor)  Ĥ𝑖 is 

Ĥ𝑖 =  𝑟𝑚𝑖𝑛 −  𝑑𝑖𝑠𝑡(𝑒, 𝑖), {𝑖 𝜖 𝑁 |𝑑𝑖𝑠𝑡 (𝑒, 𝑖) ≤ 𝑟𝑚𝑖𝑛},   𝑒 = 1, … , 𝑁  .                                    2.5.2 

The operator dist (e,i) is the distance between the center of element e and the center of element i . The 

convolution operator Ĥ𝑖 is zero outside the filter area. In the case of a linear filter the convolution 

operator for element i decay linearly with distance from element e.  Other filters that can be used are 

the so-called non-linear and 3-by-3 filters. 

III. COMPARISON OF METHODS 

To overcome checkerboard problem, use of high order finite element leads to a more expensive 

computer problem and, sometimes, cannot even solve the problem if SIMP exponent higher than 3. 
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Perimeter constraint is a good solution, because we are not only solving the checkerboard pattern but 

also the mesh dependency problem. Thus, constraining the perimeter, we can avoid the formation of 

several small holes (voids between two solid elements in a checkerboard pattern, for example). Two 

drawbacks can be noted in this formulation. The first and more direct is that we are adding a new 

constraint in the optimization problem, and manage with many constraints usually is not an easy task. 

The second one is that, a priori, we have no idea about which amount of perimeter we have to 

constraint. This can lead to different final topologies.  

The perimeter and filter methods produce very similar designs, but there are some differences. The 

perimeter control is global constraints and will allow the formation of locally very thin bars. The 

filtering schemes will generally remove thin bars. Predicting the value of the perimeter constraint for 

a new design problem must be determined by experiments, since there is no direct relation between 

local scale in the structure and the perimeter bound. If the perimeter bound is too tight, there may be 

no solution to the optimization problem. This problem is particularly difficult for three-dimensional 

problem.  

IV. FUTURE WORK 

Insight into the checkerboarding helps us to improve the mathematical instability. The future work 

can be in the field of algorithm development or the refinement of available methods so that the effect 

of instability can be reduced. Mathematical instability seems to be small when we deal with the 

simple models but in case of complex models both time and energy can be saved if more advanced 

algorithm can be developed. 

V. CONCLUSIONS 

Of the four methods, the higher-order finite elements method is probably the most convenient one. If 

checkrboarding is to be controlled irrespective of problem higher-order finite element is used. 

Computational cost of high-order finite element method is high for complex structures so most of the 

software based algorithms are taking this method as a optional method. No external techniques are 

needed other than altering the element that is used to discretize the design domain to higher-order 

finite element. When the checkerboarding problem comes up as per the need methods should be 

changed to get final Topology Optimization. Finally, we remark that theoretical studies of the 

appearance of checkerboards in three-dimensional problems are yet to be carried out. However 

numerical experience shows that checkerboards also appear for this case.                            
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