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ABSTRACT 
Remotely sensed satellite rainfall data has gained popularity in the recent past, been especially attractive to 

ungauged catchments or poorly gauged catchments. Tropical Rainfall Measuring Mission (TRMM) data is 

considered to be most accurate of the satellite derived rainfall data and with the best spatial resolution at 250 x 

250 grid.  For purposes of hydrological modelling in small catchments, this data is usually downscaled to 1km x 

1km grid to bring it closer to point measurement rain gauge data. This study evaluates whether downscaling of 

TRMM improves its meteorological drought monitoring capacity.  TRMM was downscaled from the original 250 

x 250 resolution (Approximately 28km x28km) to 1km x 1km resolution based on the relationship between 

Normalised Difference Vegetation Index (NDVI) and precipitation. Standardized Precipitation Index (SPI) was 

computed at 3, 6, 9, 12, and 24 month aggregation periods using the downscaled TRMM data (TRMM1km), 

TRMM at original resolution (TRMM28km) and observed rain gauge data. Analysis of Variance (ANOVA), t-test 

and data visualization methods were used to determine the similarity of the SPIs from the three datasets. Similarly, 

correlation analysis was done to determine dependency and modelling capability of the datasets.TRMM1km  

derived SPI was found to have lower correlation with the (correlation coefficients ranging from 0.34 to 0.42 for 

the different aggregation periods) rain gauge derived SPI as compared to  TRMM28km  derived SPI which had 

correlation coefficients ranging from 0.57 to 0.66. From analysis of variance, there was no significant difference 

between the SPI computed from TRMM and from that computed from rain gauge data. Additionally SPI 

visualization indicated similar drought patterns were identified by both TRMM and rain gauge computed SPIs. 

Therefore it was concluded that TRMM data, whether downscaled or at original resolution are useful for 

meteorological drought monitoring in Narumoro catchment.  
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I. INTRODUCTION 

Droughts affects more people on earth than any other natural disaster [1]. Droughts are defined as deficit 

below what is normal in surface water, groundwater, precipitation among others components of the 

water cycle resulting into hydrological, groundwater and meteorological droughts respectively [2].  

Droughts in the meteorological and / or in hydrological sense ultimately results into some economic 

and / or social loss resulting into social-economic drought. Due to their huge impact on the society, 

droughts are constantly monitored using various indices including SPI (Standardized Precipitation 

Index), Palmers Drought Severity Index (PDSI) [3] just to mention a few. To effectively monitor 

droughts, reliable precipitation records in adequate temporal spatial resolutions are required. In most 

developing countries, a network of rain gauges that will provide the required coverage is largely missing 

or inadequate. Remotely sensed rainfall data can provide the required spatial and temporal coverage but 
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as noted by [4], it is important to establish the accuracy of satellite precipitation data with the ground 

based observations since they are estimates and not direct observation of precipitation. [5] Also 

underscores the importance of verifying the usefulness and the quality of satellite derived precipitation 

due to their importance in filling in the limitation of traditional rain gauge data especially in the 

developing countries.   

Drought monitoring is usually done by means of various drought indices, the Standardized Precipitation 

Index (SPI) is one the more popular index and has been recommended by the World Meteorological 

Organization (WMO) for drought monitoring all over the world and has found widespread application. 

Drought identification is based on taking a drought period to be a consecutives time interval where SPI 

is less than -1. SPI is computed by fitting a probability distribution on aggregated monthly precipitation 

series and by computing the corresponding non-exceedence probabilities and standard normal quantiles 

[6].  

As mentioned, satellite data provides coverage for large spatial extent and large temporal resolution 

including real-time coverage. However the spatial coverage is often too coarse for work in localised / 

small catchments. TRMM data used in this research has a spatial resolution of 250 x 250 which is not 

comparable to point measurements by rain gauge. To compare or validate the satellite data it is 

important to have the data in resolution that is comparable to point measurements that are obtained from 

rain gauge data hence downscaling is required. Several studies have been done employing various 

methodologies for downscaling TRMM; [7] Used Digital Elevation Model from SRTM (Shuttle Radar 

Topography Mission) and SPOT VEGETATION to downscale TRMM in Qaidam Basin and they 

reported coefficient of determination r2 ranging from 0.72 to 0.96 for the annual precipitation at six 

different rain gauge stations after validating the downscaled TRMM with the rain gauge data .In their 

study at the Iberian Peninsula, [8] used SPOT VEGETATION NDVI to downscale TRMM and they 

reported ”significant improvements in correlation, bias, and root mean square error for average annual 

precipitation over the whole period, for a dry year (2005), and a wet year”.  

There is no extensive study done to evaluate the use of TRMM data in drought monitoring in Kenya 

and in small catchments, this study seeks to find out if TRMM data is suitable for drought monitoring 

in small catchments. Monitoring droughts in small catchments is important especially in water resources 

allocation. This is especially critical in Arid and Semi-Arid Lands in which Narumoro catchment is 

located.  

This paper is organized into five sections: 1) Introduction where a background to the study is presented, 

2) Study area where the case study area (Narumoro River catchment is described), 3) Methods section 

where the various methodologies and data used in the study is described, 4) Results and discussion 

section where the study’s results are presented and discussed, 5) Conclusions and recommendations of 

the study are presented in the conclusion and recommendation section 6) Finally the references used in 

the study are presented in this section, 7) at the very end is a short profile of the authors.   

II. STUDY AREA  

The study area is Narumoro river catchment. This catchment lies at the North Western slopes of Mt. 

Kenya. The river originates from the peak of Mount Kenya and is tributary to the Ewaso Ngiro River 

[9]. The catchment area utilized for this study is defined from the River Gauging Station (RGS) 5BC02, 

giving a catchment area of about 96 Km2 [10]. Within this area, only one rain gauge is available, the 

Narumoro Gate Station which is located within the Mount Kenya forest. From the 1971-2010 rainfall 

record, Narumoro station receives a rainfall monthly mean of 92 mm with most of the rainfall been 

received in MAM (March, April and May) and OND (October, November, and December) seasons.  
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Figure 1: Location of the stations used in the Research. The brightly coloured patterns demarcate the TRMM 

250 x 250Pixels 

III. METHODS 

The study focus is the utility of using satellite observed rainfall data for meteorological drought 

monitoring. The data collected consisted of the Tropical Rainfall Measuring Mission (TRMM 3B43 

v.7) [11], [12] rainfall data, the SPOT VEGETATION (SPOT VGT data) for period 2000 – 2013, and 

Ground measured rain gauge data was also collected form Narumoro Gate Rainfall station. 

3.1. Tropical Rainfall Measuring Mission 

“The Tropical Rainfall Monitoring Mission (TRMM) is a joint project between NASA and the Japanese 

space agency, JAXA. TRMM was launched on November 27th, 1997. The primary TRMM instruments 

are the Precipitation Radar (PR) (the first and only rain radar in space)and the TRMM Microwave 

Imager (TMI), a multi-channel passive microwave radiometer, which complements the PR by providing 

total hydrometeor (liquid and ice) content within precipitating systems. The Visible Infrared Scanner 

(VIRS) is used to provide the cloud context of the precipitation and is used to connect microwave 

precipitation information to infrared-based precipitation estimates from geosynchronous satellites. 

TRMM processing algorithms combine information from these instruments and provide the finest 

scale(0.25°×0.25°) precipitation estimate currently available from space” [8]. Tropical Rainfall 

Measuring Mission is one of satellite derived precipitation estimates that has good spatial temporal 

resolution suitable for large scale precipitation / drought monitoring .  

TRMM is distributed in form of netCDF files free of charge from NASA’s website [13] In their study 

to evaluate the difference between rain gauge and TRMM data in Xinjiang catchment, [5] reported good 

correlation between the satellite estimates and the observed data, they further noted that daily TRMM 

values are ill fitted for estimating rainfall extremes and that monthly TRMM values can be used to 

simulate stream flows.  It should also be noted that Rain gauge data are also known to be erroneous, 

[14] citing a world meteorological organisation article stated that rain gauge values could have up to 

30% difference with the actual rainfall. Similarly, TRMM data suffers from errors which can be 

associated with non-detection, false detection and bias hence the need to calibrate and ground truth the 

satellite estimates [14] which is a challenge considering the potential errors in rain gauge measurements. 

In spite of the shortcomings, TRMM data have found wide application in hydrology and drought studies 

especially those involving large spatial areas. 

3.2. Spot Vegetation 10-Day Composite NDVI 

The 10 day synthesis is a 1km resolution product providing 10-day MVC NDVI [15], this data is 

obtained off the SPOT 4 and SPOT 5 satellite whose mission started in 1998. The SPOT VEGETATION 
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(VGT) products are available in the three types: a)Primary products (P), extracted from a single image 

segment, b) Daily (S1) or ten-day (S10) syntheses; these are mosaics of acquired image segments, 

respectively for 24h periods and for the last 10 days, and c) Vegetation indices (NDVI) calculated from 

daily or ten-day syntheses. The data (the S products) is distributed free of charge from the Vito website 

[16] in form of images, NDVI is computed from the pixel values in the image by using the following 

relationship: 

NDVI = (RAW*0.004) - 0.1    (1) 

Where RAW is the pixel value. There is a relationship between the SPOT VEGETATION (SPOT VGT) 

NDVI values a proxy for vegetation and precipitation [7], it is this relationship that is utilized in 

downscaling of TRMM to 1km resolution.  

3.3. Meteorological Data 

Data sets containing daily rainfall records for stations Narumoro Gate and Nanyuki MOW were 

collected from the Water Resources Management Authority (WRMA). The data starting from year 2000 

up to 2011 was utilized for this study.  

3.4. Downscaling of TRMM  

Downscaling of the TRMM from TRMM28kmto TRMM1kmwas done in accordance to the following 

procedure: SPOT VGT image resolution was degraded from 1km x 1km grid to 28km x 28km grid to 

match the resolution of TRMM image. The resulting SPOT VGT image is referred to as VGT25. A 

regression model was developed between VGT25 and TRMM by plotting TRMM against VGT25 and 

getting the best curve fitting the model. A polynomial relationship was found to be the best fit model 

based on R squared, the order of the polynomial model was varied from one to three and the best model 

was adopted for the downscaling. This regression was done for every month of the data set since the 

regression models varies across the different months due to influence of rainfall amounts and other 

seasonal factors. The typical polynomial models adopted are  

TRMM25 = aNDVI3
25 + bNDVI2

25 + cNDVI25 + d ---- 3rd order  (2) 

TRMM25 = aNDVI2
25 + bNDVI25 + c ---- 2nd order  (3) 

TRMM25 = aNDVI25 + b ---- 1st order   (4) 

Where: TRMM25 is TRMM at 250 x 250 grid, NDVI25 is NDVI computed from the SPOT VGT25 image, 

and a, b, c, d are the model factors determined by regression analysis.  The model obtained is applied 

to the original NDVI image at 1km to obtain downscaled TRMM at 1km (Pn), and for every 28km pixel 

the average value P25 of the Pn is found.  The two values are used to derive a weighting factor that is 

used to calculate TRMM at 1km (TRMM1km) using the relation: 

TRMM1km = 
𝑃𝑛

𝑃25
∗ 𝑇𝑅𝑀𝑀25   (5) 

This process ensures that the average precipitation of the TRMM grid is preserved in the downscaled 

image.  

3.5. Standardized Precipitation Index (SPI) 

Standardized Precipitation Index (SPI) is used to monitor the development of meteorological droughts. 

It has been recommended by the World Meteorological Organization for use in drought monitoring. SPI 

was computed for 3, 6, 9, 12, and 24 month’s aggregation period for TRMM25, TRMM1km and original 

Rain gauge data to get SPI3, SPI6, SPI9, SPI12, and SPI24 respectively. Correlation coefficients 

between the SPIs so calculated were determined. TRMM values used were derived from the pixel within 

which the coordinates of the subject rain gauge is located.  

IV. RESULTS AND DISCUSSION 

4.1.Comparison of TRMM and Rain gauge data at Narumoro Gate Rainfall Station 
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Figure 2: Comparison of TRMM and Rain gauge Data at Narumoro Gate Station, TRMM over estimates the 

Rain gauge observed rainfall. 

Figure 2 shows that both TRMM1km and TRMM28km over estimates the observed rainfall with 

TRMM1km showing more rainfall than TRMM28km. This observation is to be expected noting that the 

Narumoro gate station is located within the Mt. Kenya forest whereas most of the TRMM pixel it 

belongs to is semi-arid. By downscaling TRMM to 1km grid, the satellite estimates are more realistic 

and comparable to the situation on the ground. It can also be noted that all the three data sets displays a 

similar pattern indicating further that the TRMM data is able to capture the precipitation pattern. Table 

1 shows that TRMM28km is more correlated to rain gauge data that TRMM1km is at Narumoro catchment. 

Table 1: Correlation Coefficients of TRMM data and Rain Gauge Data 

 TRMM 28km TRMM 1Km Rain Gauge 

TRMM 1Km 0.83 1.00  

Rain Gauge 0.76 0.58 1.00 

Drought Identification 

Droughts were identified by computing SPI for TRMM1km, Rain gauge data and TRMM28km, The SPI 

values were plotted together in a comparison charts for visualization. The SPI comparison charts are 

presented in the following figures. In regard to SPI3 as seen in Figure 3, it is noted that the pattern of 

the SPI is similar for both TRMM and Rain gauge derived SPIs meaning that the suppression of 

precipitation is been picked by both the TRMM and rain gauge data. In cases of no-detection of droughts 

by TRMM, the corresponding SPI is mainly below 1 (SPI -1 to 1 is classified as near normal). 

TRMM28km derived SPIs seems to follow the rain gauge derived SPIs better than TRMM1km. the number 

of droughts identified generally increases from SPI3 – SPI24 in the case of TRMM1km. Figure 4 shows 

the close match in SPI pattern as computed from TRMM1km and those from rain gauge data. TRMM28km 

does not follow the pattern quite closely but it does retain the general pattern. There are only one case 

of non-detection and false detection of drought by TRMM1km, even with these cases the SPI 

classification is the same for both TRMM1km and rain gauge data i.e. near normal. Figure 5 shows at 9 

month aggregation, TRMM1km detects droughts with a slight earlier onset time as compared to rain 

gauge data. This earlier onset if proven to be consistent, can be quite useful in drought early warning. 

This finding is consistent with correlation analysis which shows stronger dependence relationship 

between TRMM1km and rain gauge derived SPI at SPI9 and SPI12 with correlation coefficients of 0.37 

and 0.42 respectively (see Figure 9 ) . 
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Figure 3: SPI3 derived from TRMM and Rain gauge Data for Narumoro Gate Station. TRMM1km SPI & 

TRMM28km pattern closely match, Rain gauge SPI follows a similar pattern though it picks more low points 

than both of the TRMM SPIs. 

 

Figure 3: SPI3 derived from TRMM and Rain gauge Data for Narumoro Gate Station. TRMM1km SPI & 

TRMM28km pattern closely match, Rain gauge SPI follows a similar pattern though it picks more low points than 

both of the TRMM SPIs. 

SPI3 TRMM and Raingauge Comparison (Narumoro Gate 
No:9037149)

SPI3 TRMM and Raingauge Comparison (Narumoro Gate 
No:9037149)
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Figure 4: SPI6 derived from TRMM and Rain gauge data: there is a more similarity in the pattern of 

TRMM1km and rain gauge SPI than was in SPI3. TRMM SPI6 shape similarity with the rest is worsening. 

There is no case of non-detection by TRMM1km and only one case of false detect. 

 

Figure 5: SPI9 from TRMM and Rain gauge Data: TRMM28km is largely out of pattern with the rain gauge 

and TRMM1km. There is a case of non-detection by TRMM1km showing drought recovery earlier than the rain 

gauge data does 

SPI9 TRMM and Raingauge Comparison (Narumoro Gate 
No:9037149)
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Figure 6: SPI12 from TRMM and Rain gauge data: TRMM28km SPI closely follows rain gauge TRMM in 

detecting onset and ending of drought periods though the magnitudes of the detected droughts varies. There is 

similarity in the drought patterns as detected by TRMM1km and those detected by rain gauge data. 

 

Figure 7: SPI24 computed from TRMM and Rain gauge data. The number of false detect by TRMM1km is 

higher than in other aggregations. TRMM25 has a better pattern with rain gauge SPI than in all other 

aggregations. 

Figure 5 and Figure 6 shows very similar drought patterns to those shown by the rain gauge data, for 

the same aggregation period the correlation coefficients with the rain gauge data is higher than for all 

other aggregation periods as can be seen in Figure 9. The p-values from the t-test and ANOVA as seen 

Figure 8 decreases from SPI3 to SPI6, however it can be noted that the decrease in p-values from SPI6 

and SPI12 is very minimal which can be explained by the close matching of the drought patterns 

identified by TRMM1km and rain gauge data.   

SPI12 TRMM and Raingauge Comparison (Narumoro Gate 
No:9037149)

SPI24 TRMM and Raingauge Comparison (Narumoro Gate 
No:9037149)
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Figure 8: Analysis of variance shows that the probability of the SPI means derived from all sources are similar. 

The similarity decreases with the increase in SPI aggregation period. On average this would mean that droughts 

identified through the data sets are similar. 

Table 2 and Table 3 shows drought class identification for the study area, the identified drought periods 

are very similar across the different drought classes and along the various aggregation period.  

 

Figure 9: Correlation Analysis of the SPI Values showing that TRMM28km is correlated to Rain gauge SPI. 

Table 2: Drought Class Identification for Narumoro Gate Station using SPI3 and SPI6. Note the near match in 

the droughts periods identified 

 SPI3 SPI6 

 TRMM1km Gauge TRMM28km TRMM1km Gauge TRMM28km 

Extremely Dry 3 5 2 5 4 3 

Severely Dry 9 7 8 7 7 6 

Moderately Dry 9 11 9 11 10 11 

Near Normal 41 39 48 32 41 40 

Total 62 62 67 55 62 60 
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Table 3: Drought Class Identification for Narumoro Gate Station using SPI9, SPI12 and SP24. Note the near 

match in the droughts periods identified 

  SPI9 SPI12 SPI24 

  TRMM1km Gauge TRMM28km TRMM1km Gauge TRMM28km TRMM1km Gauge TRMM28km 

Extremely Dry 3 4 3 1 4 1 3 8 0 

Severely Dry 8 8 7 7 4 12 3 3 8 

Moderately Dry 10 8 9 14 11 5 13 9 15 

Near Normal 37 43 42 42 45 47 55 36 46 

Total 58 63 61 64 64 65 74 56 69 

V. CONCLUSIONS AND RECOMMENDATIONS 

The following comments and conclusions can be made on the results: 1) both the original and 

downscaled TRMM are capable of picking up the drought pattern as identified by SPI, 2) From the 

analysis of variance and the t-test as seen in Figure 8, there is no significant difference between means 

of SPIs from both TRMM and rain gauge data. This confirms that the TRMM data can be used to define 

droughts in study area, 3) based on figure 3 -7, it is noted that the onset and cessation of the drought 

events as indicated by the different SPIs is similar. Cases of non-detection or false detection by TRMM 

are few and in most of these incidences, Rain gauge data derived SPI are between +1 and -1 which 

basically belongs to the same drought class (Near Normal), 4) Downscaled TRMM SPI is more similar 

to the rain gauge SPI than is non-downscaled TRMM as indicated by the p-values of the t-test. These 

similarity decreases from SPI3 to SPI24 which SPI24 having the least similarity indicating drought 

monitoring using TRMM data is best done at aggregation periods of less than 9 months (see Figure 8).  

TRMM can be used to monitor meteorological droughts in Narumoro catchment. Downscaling the 

TRMM to 1 km appears to improve these capability. It is recommended that more studies to be done on 

the downscaling process to improve the similarity of TRMM and rain gauge data and how to use the 

TRMM in ungauged catchments.   
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