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ABSTRACT 

 In this paper we discuss possible applications of ig*,dg* &  bg*-closed type sets in Topological ordered 

spaces. 
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I. INTRODUCTION  

Leopoldo Nachbin [1] initiated the study of topological ordered spaces. Levine [4] introduced the 

class of g-closed sets, a super class of sets in 1970. M.K.R.S. Veera Kumar  [2]introduced a new class 

of sets, called g*-closed sets in 2000, which is properly placed in  between the class of closed sets and 

the class of g-closed sets M.K.R.S. Veera Kumar [3] introduced the study of i-closed, d-closed and b-

closed sets in 2001.  G.Srinivasarao introduced the study of ig-closed, dg-closed, bg-closed, ig*-

closed, dg*-closed and bg*-closed sets  in 2014[5].  

II. PRELIMINARIES 

Definition 2.1 A subset A of a topological space (X ,  , ≤ ) is called  

1. An i-closed set [3] if A is an increasing set and closed set. 

2. A d-closed set [3] if A is a decreasing set and closed set. 

3. A b-closed set [3] if A is a both increasing and decreasing set and a closed set. 

4. ig-closed set [5] if   icl(A)  U  whenever AU and U is open in (X, ). 

5. dg-closed  [5] set if   dcl(A)  U  whenever AU and U is open in (X, ). 

6. bg-closed set [5]  if  bcl(A)  U  whenever AU and U is open in (X, ). 

Theorem 2.2. [2] Every closed set is a g-closed set. 

The following example supports that a g-closed set need not be closed set in general. 

Example 2.3.  [2]  

space. closed 

c}. g- c}, {c,a}.Let A={c}. Clearly A is a g-closed set but 

not a closed set. 

Theorem 2.4. [2]  Every g*-closed set is a g-closed set. 

The following example supports that a g-closed set need not be a g*-closed set in general. 

Example 2.5. [2] Let X = {a , b , c} , 2 

-
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{b}, {c}, {a,b}, {b , c}, {c,a}. g*-  A is a g-closed set 

but not a g*-closed set. 

Theorem 2.6. [5]  Every i-closed set is an ig-closed set. 

The following example supports that an ig-closed set need not be an i-closed set in general. 

Example 2.7. [5]   and ≤2 = {(a , a) , (b , b) , (c , c) , (a , b) 

 ig-closed sets are Φ , X , {b} , {a , 

b}. i-  Clearly A is an ig-closed set but not an i-closed 

set. 

Theorem 2.8.[5]  Every d-closed set is a dg-closed set. 
The following example supports that a dg-closed set need not be d-closed set in general. 

Example 2.9. [5]  , b) , 

-

c}. d- -closed set but not a d-closed set. 

Theorem 2.10. [5]  Every b-closed set is a bg-closed set. 

The following example supports that a bg-closed set need not be a b-closed set in general. 

Example 2.11. [5]  Let X = {a , b , c} ,  
2  = {  , X , {a}} and ≤3 = {(a , a) , (b , b) , (c , c) , (a , b) , 

(a , c)}. Clearly (X , ,2  ≤3 ) is a topological ordered space. bg-closed sets are   , X , {c}.  b-closed 

sets are   , X. Let A = {c}.Clearly A is a bg-closed set but not a b-closed  set. 

Theorem 2.12. [5]  Every bg-closed set is an ig-closed set. 

The converse of above theorem need not be true.  This will be justify from the following example. 

Example 2.13. [5] Let X = {a , b , c} ,  
1  = {  , X , {a} , {b} , {a , b}} and ≤1 = {(a , a) , (b , b) , (c , 

c) , (a , b) , (b , c) , (a , c)}. Clearly (X , ,1  ≤1 ) is a topological ordered space 

Let A = {c}.  Clearly A is an ig closed set but not a bg-closed set. 

THEOREM 2.14. [5]   Every bg-closed set is a dg-closed set. 
The converse of above theorem need not be true.  This will be justify from the following example. 

EXAMPLE 2.15. [5]  Let X = {a , b , c} ,  
1  = {  , X , {a} , {b} , {a , b}} and   ≤3 = {(a , a) , (b , 

b) , (c , c) , (a , b) , (a , c)}. Clearly (X , ,1 ≤3 ) is a topological ordered space.  

Let A ={a , c}.  Clearly A is a dg-closed set but not a bg-closed set. 

THEOREM 2.16. [5]  Every b-closed set set is an i-closed set. 

The converse of above theorem need not be true.  This will be justify from the following example.

   

EXAMPLE 2.17. [5]   Let X = {a , b , c} , 1  = {  , X , {a} , {b} , {a , b}} and ≤1 = {(a , a) , (b , b) , 

(c , c) , (a , b) , (b , c) , (a , c)}. Clearly (X , ,1 ≤1 ) is a topological ordered space. i-closed sets are   , 

X , {c} , {b , c}.b-closed sets are   , X. Let A = {c} or {b , c} . Clearly A is an i-closed set but not a 

b-closed set. 

THEOREM 2.18.[5]   Every b-closed set is a d-closed set. 
The converse of above theorem need not be true.  This will be justify from the following example.

     

EXAMPLE 2.19. [5]  Let X = {a , b , c} ,  1  = {  , X , {a} , {b} , {a , b}} an ≤2 = {(a , a) , (b , b) , 

(c , c) , (a , b) , (c , b)}. Clearly (X , ,1  ≤2 ) is a topological ordered space.d-closed sets are   , X , 

{c} , {b , c}.  b-closed sets are    , X. Let A = {c} or {b , c}.  Clearly A is a d-closed set but not a b-

closed set. 

THEOREM 2.20.  [5]   Every ig*-closed set is an ig-closed set. 

The converse of above theorem need not be true.  This will be justify from the following example. 

EXAMPLE 2.21.  [5] Let X = {a , b , c} , 2  = {  , X , {a}} and ≤1 = {(a , a) , (b , b) ,  

(c , c) , (a , b) , (b , c) , (a , c)}.  Clearly (X , ,2 ≤1 ) is a topological ordered space. ig-closed 

sets are   , X , {c} , {b , c}. ig*-closed sets are   , X , {b , c}. Let A = {c}.  Clerly A is a 

ig-closed set but not a ig*-closed set. 

THEOREM 2.22. [5]  Every dg*-closed set is an dg-closed set. 
The converse of above theorem need not be true.  This will be justify from the following example. 
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EXAMPLE 2.23. [5]  Let X = {a , b , c} ,
2  = {  , X , {a}} and ≤2 = {(a , a) , (b , b), (c , c) , (a , b) , 

(c , b)}.  Clearly (X , ,2  ≤2 ) is a topological ordered space.dg-closed sets are   , X , {c} , {b , c}.  

dg*-closed sets are   , X , {b , c}.Let A = {c}. Clearly A is an dg-closed set but not a dg*-closed 

set.So the class of dg-closed sets properly contains the class of all dg*-closed sets.  

THEOREM 2.24. [5]   Every bg*-closed set is a bg-closed set. 

The converse of above theorem need not be true. This will be justify from the following example. 

EXAMPLE 2.25. [5] Let X = {a , b , c} ,
2  = {  , X , {a}} and ≤3 = {(a , a) , (b , b) ,  

(c , c) ,   (a , b) , (a , c)}.Clearly (X , ,2 ≤3 ) is a topological ordered space. bg*-closed sets are   , X. 

bg-closed sets are  , X , {c}. Let A = {c}.  Clearly A is bg-closed set but not a bg*-closed set. So the 

class of bg-closed sets properly contains the class of  all bg*-closed sets. 

THEOREM 2.26. [5]  Every bg*-closed set is an ig*-closed set. 
The converse of above theorem need not be true. This will be justify from the following example. 

   

EXAMPLE 2.27. [5] : Let X = {a , b , c} , 3  = {  , X , {a} , {b , c}} and  ≤3 = {(a , a) ,  

(b , b) , (c , c) , (a , b) , (a , c)}. Clearly (X , ,3  ≤3 ) is a topological ordered space.  

Let A = {b}.  Clearly A is an ig*-closed set but not a bg*-closed set. 

THEOREM 2.28. [5]  Every bg*-closed set is an dg*-closed set. 
The converse of above theorem need not be true. This will be justify from the following example. 

EXAMPLE 2.29. [5]   Let X = {a , b , c} ,
1  = {  , X , {a} , {b} , {a , b}} and  ≤3 = {(a , a) , (b , b) , 

(c , c) , (a , b) , (a , c)}.  Clearly (X , ,1  ≤3 ) is a topological ordered space. Let  

A = {a , c}.  Clearly A is a dg*-closed set but not a ig*-closed set. The class of all dg*-closed sets 

properly contains the class of  all bg*-closed sets. 

THEOREM 2.30.[5]   Every i-closed set is an ig*-closed set. 

The converse of above theorem need not be true.  This will be justify from the following example. 

EXAMPLE 2.31. [5]   Let X = {a , b , c} ,  3  = {  , X , {a} , {b , c}} and ≤4 = {(a , a) , 

 (b , b) , (c , c) , (a , b) , (c , b)}.  Clearly (X , ,3  ≤4 ) is a topological ordered space. ig*-closed sets 

are   , X , {b , c}.  i-closed sets are   , X.Let A = {b , c}.  Clearly A is a ig*-closed set but not an i-

closed set.The class of all ig*-closed sets properly contains the class of all i-closed sets. 

THEOREM 2.32. [5]  Every d-closed set is a dg*-closed set. 

The converse of above theorem need not be true.  This will be justify from the following example. 

EXAMPLE 2.32.  [5]  Let X = {a , b , c} ,  
4  = {  , X , {a} , {b , c}} and ≤2 = {(a , a) , (b , b) , (c 

, c) , (a , b) , (c , b)}.  Clearly (X , ,4  ≤2 ) is a topological ordered space. dg*-closed sets are   , X , 

{b , c}.  d-closed sets are   , X.Let A = {b , c}.  Then A is dg*-closed set but not a d-closed set. The 

class of all dg*-closed sets properly contains the class of  all d-closed sets. 

 

THEOREM 2.33. [5] Every b-closed set is a bg*-closed set. 
The converse of above theorem need not be true.  This will be justify from the following example. 

EXAMPLE 2.34. [5]  Let X = {a , b , c} ,  6  = {  , X , {a} , {b} , {a , b}{a , c}} and                ≤7 = 

{(a , a), (b , b), (c , c), (b , c), (c , a), (b , a)}.   Clearly (X , ,6  ≤7 ) is a topological ordered space.bg*-

closed sets are   , X , {b}.  b-closed sets are   , X. Let A = {b}. Then A is bg*-closed set but not a b-

closed set. The class of all bg*-closed sets properly contains the class of all b-closed sets. 

  

THEOREM 2.35.  [5]  Every bg*-closed set is an ig-closed set. 

Then every bg*-closed set is an ig-closed set. The converse of above theorem need not be true.  This 

will be justify from the following example. 

EXAMPLE  2.36. [5]  Let X = {a , b , c} ,  1  = {  , X , {a} , {b} , {a , b}} and ≤3 = {(a , a) , (b , b) 

, (c , c) , (a , b) , (a , c)}.   Clearly (X , ,1  ≤3 ) is a topological ordered space.bg*-closed sets are   , 
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X.   ig-closed sets are   , X , {c} , {b , c}. Let A = {c} or {b , c}.  Clearly A is an ig-closed set but 

not a bg*-closed set.The class of all ig-closed sets properly contains the class of all bg*-closed sets.  

THEOREM 2.37. [5]  Every bg*-closed set is a dg-closed set.    

The converse of above theorem need not be true.  This will be justify from the following example. 

EXAMPLE 2.38.  [5]  Let X = {a , b , c} ,  
1  = {  , X , {a} , {b} , {a , b}} and ≤2 = {(a , a) ,     (b 

, b) , (c , c) , (a , b) , (c , b)}.Clearly (X , ,1 ≤2) is a topological ordered space.bg*-closed sets are   , 

X.  dg-closed sets are   , X , {c} , {b , c}. Let A = {c} or {b , c}.  Clearly A is a dg-closed set but not 

a bg*-closed set. 

III. APPLICATIONS OF G*-CLOSED TYPE SETS 

 DEFINITION 3.1. [5]  A subset  ‘A’ of (X , ,  ≤ ) is called a ig*-closed set if icl(A)   U whenever  

AU and U is a g-open in (X ,  ).The class of all ig*-closed subsets of (X ,  ) is denoted by 

IG*C(X). 

DEFINITION 3.2.[5]   A subset  ‘A’ of (X , ,  ≤  ) is called a dg*-closed set if  dcl(A)   U 

whenever AU and U is a g-open in (X ,  ).The class of all dg*-closed subsets of (X ,  ) is denoted 

by DG*C(X). 

DEFINITION 3.3. [5]  A subset  ‘A’ of (X , , ≤ ) is called a bg*-closed set if  bcl(A)   U 

whenever  AU and U is a g-open in (X ,  ).The class of all dg*-closed subsets of (X ,  ) is 

denoted by BG*C(X).  

 DEFINITION 3.4   A topological ordered space (X, ,   ) is called 

i)  a iT1/2
*space, if every ig*-closed set is closed. 

ii)  a dT1/2
*space, if every dg*-closed set is closed. 

iii) a bT1/2
*space, if every bg*-closed set is closed. 

DEFINITION 3.5.   A topological ordered space (X, ,   ) is called 

i)  iTi
*

1/2  space if every ig*-closed set is an i-closed set. 

ii)    dTd 
*
1/2  space if every dg*-closed set is a d-closed set. 

iii) bTb
*
1/2  space if every bg*-closed set is a b-closed set. 

THEOREM 3.6.   Every iT1/2
* space is bT1/2

* space. 

Proof:  Let  (X ,   ) be  iT1/2
* space.  We show that (X ,   )  is bT1/2

* space.Let A be a bg*-closed 

subset of X.  Then A is an ig*-closed subset of A.Since (X ,   )  is an iT1/2
* - space then A is closed. 

Every bg*-closed subset of X is a closed set. Hence  (X ,   )   is  bT1/2
* space.  Thus every iT1/2

* space 

is bT1/2
* space. The converse of the above theorem need not be true.  This will be justify from the 

following example. 

EXAMPLE 3.7.    Let X = {a , b , c} , 4  = {  , X , {a} , {b , c}} and ≤2 = {(a , a) , (b , b) , (c , c) 

, (a , b) , (c , b)}.  Clearly (X , ,4 ≤2  ) is a topological ordered space.   bg*-closed sets are , X . 

closed sets are   , X , {a} , {b , c}.  ig*-closed sets are  , X , {b} , {a , b}.  Here every bg*-closed 

set is a closed set. Therefore (X , ,2  ≤3  ) is bT1/2
* space. Let A = {a , b}.  Clearly A is an ig*-closed 

set but not a closed set.  Hence (X , ,2  ≤3  ) is not a iT1/2
* space. 

 THEOREM 3.8.   Every dT1/2
* space is bT1/2

* space. 

Proof: Let  (X ,   ) be  dT1/2
* space.  We show that (X ,   )  is bT1/2

* space.Let A be a bg*-closed 

subset of X.  Then A is an dg*-closed subset of A.Since (X ,   )  is an dT1/2
* - space then A is closed. 

Every bg*-closed subset of X is a closed set.Hence  (X ,   )   is  bT1/2
* space.  Thus every dT1/2

* space 

is bT1/2
* space.The converse of the above theorem need not be true.  This will be justify from  the 

following example. 

EXAMPLE 3.9.   Let X = {a , b , c} ,  4  = {  , X , {a} , {b , c}} and ≤3 = {(a , a) , (b , b) , (c , c) 

, (a , b) , (a , c)}.  Clearly (X , ,4 ≤3  ) is a topological ordered space.   bg*-closed sets are , X . 

closed sets are   , X , {a} , {b , c}.  dg*-closed sets are  , X , {b} .  Here every bg*-closed set is a 
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closed set. Therefore (X , ,4  ≤3  ) is bT1/2
* space. Let A = { b}.  Clearly A is an dg*-closed set but not 

a closed set.  Hence (X , ,4 ≤3  ) is not a dT1/2
* space.  

THEOREM 3.10.    iT1/2
* space  and  dT1/2

* space  are independent notions.  This will be seen in 

the following examples. 

EXAMPLE 3.11.  Let X = {a , b , c} ,  4  = {  , X , {a} , {b , c}} and  ≤2 = {(a , a) , (b , b) , (c , 

c) , (a , b) , (c , b)}.  Clearly (X , ,4 ≤2  ) is a topological ordered space.   bg*-closed sets are , X . 

closed sets are   , X , {a} , {b , c}.  ig*-closed sets are  , X , {b} , {a , b}.  Here every bg*-closed 

set is a closed set. Therefore (X , ,2  ≤3  ) is bT1/2
* space. Let A = {a , b}.  Clearly A is an ig*-closed 

set but not a closed set.  Hence (X , ,2  ≤3  ) is not a iT1/2
* space.   

EXAMPLE 3.12.   Let X = {a , b , c} ,  4  = {  , X , {a} , {b , c}} and  ≤3 = {(a , a) , (b , b) , (c , 

c) , (a , b) , (a , c)}.  Clearly (X , ,4 ≤3  ) is a topological ordered space.   bg*-closed sets are , X . 

closed sets are   , X , {a} , {b , c}.  dg*-closed sets are  , X , {b} .  Here every bg*-closed set is a 

closed set. Therefore (X , ,4  ≤3  ) is bT1/2
* space. Let A = { b}.  Clearly A is an dg*-closed set but not 

a closed set.  Hence (X , ,4 ≤3  ) is not a dT1/2
* space.  

THEOREM 3.13.   Every iTi,1/2  space is an iTi,*1/2  space. 

Proof : Let  ( X ,   , ≤ ) be an iTi,1/2  space .  We show that ( X ,   , ≤ ) is an iTi,*1/2  space. 

Let A be an ig*-closed subset of X.  Then A is an ig-closed subset of X. Since ( X ,   , ≤ ) be an iTi,1/2  

space and A is an ig-closed subset of X, then A is an i-closed set. Every ig*-closed set is an i-closed 

set.  Then ( X ,   , ≤ ) is an iTi,*1/2  space.  Thus every iTi,1/2  space is an iTi,*1/2  space. The converse 

of the above theorem need not be true.  This will be  justfy from the following example. 

EXAMPLE 3.14.    Let X = {a , b , c} ,  2  = {  , X , {a}} and ≤2 = {(a , a) , (b , b) ,(c , c) , (a , b) 

, (c , b)}.  Clearly (X , ,2 ≤2 ) is a topological ordered space. ig-closed sets are  , X , {b} , {a , b}.  

ig*-closed sets are  , X .  i-closed sets are   , X .  Here every ig*-closed set is an i-closed set .  Let 

A = {b} or {a , b}.  Clearly A is an ig-closed set but not an i- closed set.  Hence (X , ,2 ≤2 ) is an 

iTi,*1/2  space and not a  iTi,1/2  space. 

THEOREM 3.15.  Every dTd , 1/2  space is an dTd ,*1/2  space. 

Proof: Let  ( X ,   , ≤ ) be a dTd , 1/2  space .  We show that ( X ,   , ≤ ) is an dTd ,*1/2  space. 

Let A be a dg*-closed subset of X.  Then A is a dg-closed subset of X.Since ( X ,   , ≤ ) be an dTd , 1/2  

space and A is a dg-closed subset of X, then A is a d-closed set.Every dg*-closed set is a d-closed set.  

Then ( X ,   , ≤ ) is an dTd , *1/2  space.  Thus every       dTd , 1/2  space is a dTd , *1/2  space. The 

converse of the above theorem need not be true.  This will be justify from n the following example. 

EXAMPLE 3.16.    Let X = {a , b , c} ,  2  = {  , X , {a}} and ≤6 = {(a , a) , (b , b) ,(c , c) , (b , a) 

, (a , c) , (b , c)}.  Clearly (X , ,2 ≤6 ) is a topological ordered space. dg-closed sets are  , X , {b} , 

{a , b}.  dg*-closed sets are  , X .  d-closed sets are   , X .  Here every dg*-closed set is a d-closed 

set .  A = {b} or {a , b}.  Clearly A is a dg-closed set but not a d- closed set.  Hence (X , ,2 ≤6 ) is an 

dTd , *1/2  space and not a  dTd , 1/2  space.  

THEOREM 3.17.   Every bTb , 1/2  space is an bTb ,*1/2  space. 

Proof:  Let  ( X ,   , ≤ ) be a bTb  , 1/2  space .  We show that ( X ,   , ≤  ) is an bTb ,*1/2  space. Let A 

be a bg*-closed subset of X.  Then A is a bg-closed subset of X. Since ( X ,   , ≤ ) be an bTb , 1/2 space 

and A is a bg-closed subset of X, then A is a b-closed set. Every bg*-closed set is a b-closed set. Then 

( X ,   , ≤ ) is an bTb , *1/2  space.  Thus every   bTb , 1/2  space is a bTb  , *1/2  space. The converse of the 

above theorem need not be true.  This will be justify from  the following example. 

EXAMPLE 3.18.    Let X = {a , b , c} ,  2  = {  , X , {a}} and ≤3 = {(a , a) , (b , b) ,(c , c) ,  (a , 

b) , (a , c)}.  Clearly (X , ,2 ≤3 ) is a topological ordered space. bg-closed sets are  , X , {b , c} . 

bg*-closed sets are  , X . b-closed sets are   , X .  Here every bg*-closed set is a b-closed set .    
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Let A = {b} or {a , b}.  Clearly A is a bg-closed set but not a b- closed set.  Hence (X , ,2 ≤3 ) is an 

bTb  , *1/2  space and not a  bTb , 1/2  space.  

THEOREM  3.19.  The spaces d T d, * 1/2 and b T b , * 1/2 are independent notions.  This will be 

seen in the following examples. 

EXAMPLE 3.20.  Let X = {a , b , c} ,  ,6  = {  , X , {a} , {b} , {a,b} , {a , c}} and   ≤7 = {(a , a) 

, (b , b) , (c , c) ,(b , c) , (c , a) , (b , a)}. Clearly (X , ,6  
≤7  ) is a topological ordered space.   Here d-

closed sets are   , X , {a , c} . dg*- closed sets are   , X , {a , c}  and b-closed sets are   , X  bg*- 

closed sets are   , X , {b} .   Clearly every ig-closed set is an i-closed set.  So(X , ,6  
≤7  )  is  dTd,*1/2  

space.  Let A =   {b} .  Clearly A is a bg*-closed set but  not a b-closed set.  Thus   (X  , ,6 ≤67) is  

not a  bTb,*1/2  space. 

EXAMPLE 3.21.  Let X = {a , b , c} ,  4  = {  , X , {a} , {b , c}} and ≤2 = {(a , a) , (b , b) , (c , c) 

, (a , b) , (c , b)}. Clearly (X , ,4 ≤2  ) is a topological ordered space.   bg*-closed sets are , X . b-

closed sets are   , X .  dg*-closed sets are  , X , {b , c} .  Here every bg*-closed set is a closed set. 

Therefore (X , ,2  ≤3  ) is bT1/2
* space. Let A = {b , c}. Clearly A is a bg*-closed set but not a b-closed 

set.  Hence (X , ,2  ≤3  ) is not a bT b,* 1/2  space.  

THEOREM 3.22.   Every iTb   space is an bTb ,*1/2  space. 

Proof: Let  ( X ,   , ≤ ) be a iTb   space .  We show that ( X ,   , ≤ ) is an bTb ,*1/2  space. Let A be a 

bg*-closed subset of X.  We know that every balanced set is an increasing set  and  g*-closed set is a 

g-closed set.  Then A is an  ig-closed subset of X. Since ( X ,   , ≤ ) be an iTb  space and A is an ig-

closed subset of X, then A is a b-closed set. Every bg*-closed set is a b-closed set.  Then ( X ,   , ≤ ) 

is an bTb , *1/2  space.  Thus every    bTb , 1/2  space is a 

 bTb  , *1/2  space.The converse of the above theorem need not be true.  This will be justify from  the 

following example. 

EXAMPLE 3.23.  Let X = {a , b , c} ,  ,1  = {  , X , {a},{b},{a,b}} and ≤1 = {(a , a) , (b , b) , (c , 

c) , (a , b) , (b,c),(a,c)}.  Here  i-closed sets are   , X , {c},{b,c}.  b-closed sets are   , X  and bg*-

closed sets are   , X .  Let A = {c} or {b , c}.  Clearly A is an ig-closed set  but not a b-closed set.  

Every  bg*-closed set is a b-closed set.  Thus (X , ,1 ≤1 ) is a bTb, * 1/2   space but not iTb  space. 

THEOREM 3.24.   Every dTb   space is an bTb ,*1/2  space. 

Proof:  Let  ( X ,   , ≤ ) be a dTb   space .  We show that ( X ,   , ≤ ) is an bTb ,*1/2  space. Let A be a 

bg*-closed subset of X.  We know that every balanced set is a decreasing set   and every g*-closed set 

is a g-closed set. Then A is a dg-closed subset of X. Since ( X ,   , ≤ ) be an dTb  space and A is a dg-

closed subset of X, then A is a b-closed set.Every bg*-closed set is a b-closed set.  Then ( X ,   , ≤ ) 

is an bTb , *1/2  space.  Thus every  dTb   space is a bTb  , *1/2  space. The converse of the above theorem 

need not be true.  This will be justify from the  the following example. 

EXAMPLE 3.25.  Let X = {a , b , c} ,  ,1  = {  , X , {a},{b},{a,b}} and ≤1 = {(a , a) , (b , b) , (c , 

c) , (a , b) , (b,c),(a,c)}.  Here  dg-closed sets are   , X , {c},{b,c}.  b-closed sets are   , X  and bg*-

closed sets are   , X . Let A = {c} or {b , c}.  Clearly A is a dg-closed set  but not a b-closed set.  

Every  bg*-closed set is a b-closed set.  Thus (X , ,1 ≤1 ) is a bTb, * 1/2   space but not dTb  space. 

THEOREM 3.26.  Every  iT1/2   space  is bT1/2
*  space. 

Proof: Let  ( X ,   , ≤ ) be an iT1/2  space .  We show that ( X ,   , ≤ ) is an bT*1/2  space. 

Let A be a bg*-closed subset of X.  Then A is an ig-closed subset of X. Since ( X ,   , ≤ ) be an iT1/2  

space and A is an ig-closed subset of X, then A is a closed set. Every bg*-closed set is a closed set.  

Then ( X ,   , ≤ ) is an bT1/2
*   space.  Thus every iT1/2  space is an bT1/2 *  space. The converse of the 

above theorem need not be true.  This will be justify from the  the following example. 

EXAMPLE 3.27.   Let X = {a , b , c} ,  2  = {  , X , {a}} and  ≤2 = {(a , a) , (b , b) ,(c , c) ,  (a , b) , 

(c , b)}.  Clearly (X , ,2 ≤2  ) is a topological ordered space. ig-closed sets are  , X , {b} , {a , b} . 

bg*-closed sets are  , X , {b , c}. closed sets are   , X , {b , c}.  Here every bg*-closed set is a 
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closed set .    Let A = {b} or {a , b}.  Clearly A is an ig-closed set but not an closed set.  Hence (X , 

,2 ≤3 ) is an bT1/2 *  space and not a  iT 1/2  space.  

THEOREM 3.28.  Every  dT1/2   space  is bT1/2
*  space. 

Proof: Let  ( X ,   , ≤ ) be an dT1/2  space .  We show that ( X ,   , ≤ ) is an bT*1/2  space. 

Let A be a bg*-closed subset of X.  Then A is a dg-closed subset of X. Since ( X ,   , ≤ ) be an dT1/2  

space and A is a  dg-closed subset of X, then A is a closed set. Every bg*-closed set is a closed set.  

Then ( X ,   , ≤ ) is an bT1/2
*   space.  Thus every dT1/2  space is an bT1/2 *  space. The converse of the 

above theorem need not be true.  This will be justify from the  the following example. 

EXAMPLE 3.29.   Let X = {a , b , c} ,  2  = {  , X , {a}} and  ≤2 = {(a , a) , (b , b) ,(c , c) ,  (a , b) , 

(c , b)}.  Clearly (X , ,2 ≤2  ) is a topological ordered space. ig-closed sets are  , X , {b} , {a , b} . 

bg*-closed sets are  , X , {b , c}. closed sets are   , X , {b , c}.  Here every bg*-closed set is a 

closed set .    Let A = {b} or {a , b}.  Clearly A is an ig-closed set but not an closed set.  Hence (X , 

,2 ≤3 ) is an bT1/2 *  space and not a  iT 1/2  space. 

THEOREM 3.30. The spaces d T 1/2 *  and i T 1/2 are independent notions.  This will be seen in the 

following examples. 

EXAMPLE 3.31.  Let X = {a , b , c} ,  2  = {  , X , {a}} and ≤1 = {(a , a) , (b , b) ,(c , c) ,  (a , b) 

, (b  , c) , (a , c)}.  Clearly (X , ,2 ≤1  ) is a topological ordered space. ig-closed sets are  , X , {c} , 

{b , c} . dg*-closed sets are  , X .  closed sets are   , X , {b  , c}.  Here every dg*-closed set is a 

closed set .    Let A = {c} .  Clearly A is an ig-closed set but not an closed set.  Hence (X , ,2 ≤1 ) is 

an iT1/2  space and not a  dT ½
*  space.  

EXAMPLE 3.32.   Let X = {a , b , c} ,  4  = {  , X , {a} , {b , c}} and  ≤3 = {(a , a) , (b , b) , (c , 

c) , (a , b) , (c , b)}.  Clearly (X , ,4  ≤3  ) is a topological ordered space.   dg*-closed sets are , X , 

{a , b}. closed sets are   , X , {b} , {b , c) .  ig-closed sets are  , X , {b} .  Here every ig-closed set 

is a closed set. Therefore (X , ,2  ≤3  ) is iT1/2 space. Let A = {a  , b}  Clearly A is a dg*-closed set but 

not a closed set.  Hence (X , ,2  ≤3  ) is not a dT ½*
  space.  

THEOREM 3.33.  The spaces d T 1/2 *  and b T 1/2 are independent notions.  This will be seen in 

the following examples. 

EXAMPLE 3.34.   Let X = {a , b , c} ,  2  = {  , X , {a}} and   ≤3 = {(a , a) , (b , b) ,(c , c) ,  (a , b) 

, (a , c)}.  Clearly (X , ,2  ≤3  ) is a topological ordered space. bg-closed sets are  , X , {c}. dg*-

closed sets are  , X .  closed sets are   , X , {b} , {b  , c}.  Here every dg*-closed set is a closed set 

.    Let A = {c} .  Clearly A is a bg-closed set but not an closed set.  Hence (X , ,2  ≤1 ) is an dT1/2
*   

space and not a  bT 1/2  space.  

EXAMPLE 3.35.  Let X = {a , b , c} ,  4  = {  , X , {a} , {b , c}} and  ≤3 = {(a , a) , (b , b) , (c , 

c) , (a , b) , (c , b)}.  Clearly (X , ,4 ≤3  ) is a topological ordered space.   dg*-closed sets are , X , {a 

, b}. closed sets are   , X , {b} , {b , c) .  bg-closed sets are  , X .  Here every bg-closed set is a 

closed set. Therefore (X , ,2  ≤3  ) is bT1/2 space. Let A = {a  , b}  Clearly A is a dg*-closed set but not 

a closed set.  Hence (X , ,2  ≤3  ) is not a dT1/2
* 

  space. 

THEOREM 3.36.   The spaces d T d,1/2  and b T b
*

,1/2 are independent notions.  This will be seen in 

the following examples. 

EXAMPLE 3.37.   Let X = {a , b , c} ,  ,6  = {  , X , {a} , {b} , {a,b} , {a , c}} and               ≤7 = 

{(a , a) , (b , b) , (c , c) ,(b , c) , (c , a) , (b , a)}. Clearly (X , ,6  
≤7  ) is a topological ordered space.   

Here d-closed sets are   , X , {b} , {b , c} . dg-closed sets are   , X , {b} , {b , c}  and b-closed sets 

are   , X    bg*- closed sets are   , X , {b} .   Clearly every dg-closed set is a d-closed set.      So(X , 
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,6  
≤7  )  is  dTd,1/2  space.  Let A =   {b} .  Clearly A is a bg*-closed set but  not a b-closed set.  Thus  

(X  , ,6 ≤7  ) is  not a  bTb,*1/2  space. 

EXAMPLE 3.38.   Let X = {a , b , c} ,  4  = {  , X , {a} , {b , c}} and  ≤2 = {(a , a) , (b , b) , (c , 

c) , (a , b) , (c , b)}.  Clearly (X , ,4 ≤2  ) is a topological ordered space.   dg-closed sets are  , X , {b 

, c}. d-closed sets are   , X.  bg*-closed sets are  , X .  b-closed sets are  , X Here every bg*-

closed set is a b-closed set. Therefore (X , ,2  ≤3  ) is bTb
*
1/2 space. Let A = {a  , b}  Clearly A is a dg-

closed set but not a d-closed set.  Hence (X , ,2  ≤3  ) is not a dTd,1/2
 
  space. 

THEOREM 3.39.  The spaces d T d,1/2  and b T b
*

,1/2 are independent notions.  This will be seen in 

the following examples. 

EXAMPLE 3.40.   Let X = {a , b , c} ,  ,6  = {  , X , {a} , {b} , {a,b} , {a , c}} and               ≤7 = 

{(a , a) , (b , b) , (c , c) ,(b , c) , (c , a) , (b , a)}. Clearly (X , ,6  
≤7  ) is a topological ordered space.   

Here d-closed sets are   , X , {b} , {b , c} . dg-closed sets are   , X , {b} , {b , c}  and b-closed sets 

are   , X    bg*- closed sets are   , X , {b} .   Clearly every dg-closed set is a d-closed set.      So(X , 

,6  
≤7  )  is  dTd,1/2  space.  Let A =   {b} .  Clearly A is a bg*-closed set but  not a b-closed set.  Thus  

(X  , ,6 ≤7 ) is  not a  bTb,*1/2  space. 

EXAMPLE 3.41.  Let X = {a , b , c} , 4  = {  , X , {a} , {b , c}} and ≤2 = {(a , a) , (b , b) , (c , c) 

, (a , b) , (c , b)}.  Clearly (X , ,4 ≤2  ) is a topological ordered space.   dg-closed sets are  , X , {b , 

c}. d-closed sets are   , X.  bg*-closed sets are  , X .  b-closed sets are  , X Here every bg*-closed 

set is a b-closed set. Therefore (X , ,2  ≤3  ) is bTb
*
1/2 space. Let A = {a  , b}  Clearly A is a dg-closed 

set but not a d-closed set.  Hence (X , ,2  ≤3  ) is not a dTd,1/2
 
  space. 

THEOREM 3.42.  The spaces i T i 
*
1/2  and d T d

*
,1/2 are independent notions.  This will be seen in 

the following examples. 

EXAMPLE 3.43.  Let X = {a , b , c} , 4  = {  , X , {a} , {b , c}} and ≤3 = {(a , a) , (b , b) , (c , c) 

, (a , b) , (c , b)}.  Clearly (X , ,4  ≤3  ) is a topological ordered space.   dg*-closed sets are , X , {a , 

b}. d-closed sets are   , X , {b} , {b , c) .  bg*-closed sets are  , X , {b}. b-closed sets are  , X . 

Here every bg*-closed set is a b-closed set. Therefore (X , ,2  ≤3  ) is bT b, 
*
1/2 space. Let A = {b  , c}  

Clearly A is a dg*-closed set but not a d-closed set.  Hence (X , ,2  ≤3  ) is not a dT d*
1/2

 
  space.  

EXAMPLE 3.44.  Let X = {a , b , c} ,  ,6  = {  , X , {a} , {b} , {a,b} , {a , c}} and               ≤7 = 

{(a , a) , (b , b) , (c , c) ,(b , c) , (c , a) , (b , a)}. Clearly (X , ,6  
≤7  ) is a topological ordered space.   

Here d-closed sets are   , X , {b} , {b , c} . dg*-closed sets are   , X  ,  {b , c}  and b-closed sets are 

  , X    bg*- closed sets are   , X , {b} .   Clearly every dg-closed set is a d-closed set.      So(X , 

,6  
≤7  )  is  dTd, 

*
1/2  space.  Let A =   {b} .  Clearly A is a bg*-closed set but  not a b-closed set.  Thus  

(X  , ,6 ≤7 ) is  not a  bTb,*1/2  space. 

THEOREM 3.45.  The spaces i T i 
*
1/2  and bT b

*
,1/2 are independent notions.  This will be seen in 

the following examples. 

EXAMPLE 3.46.  Let X = {a , b , c} , 4  = {  , X , {a} , {b , c}} and ≤4 = {(a , a) , (b , b) , (c , c) , 

(c , a) , (c , b)}.  Clearly (X , ,4 ≤4 ) is a topological ordered space.  ig*-closed sets are , X , {b} , {a 

, b}. i-closed sets are   , X , {a , b}.  bg*-closed sets are  , X.  b-closed sets are  , X . Here every 

bg*-closed set is a b-closed set. Therefore (X , ,2  ≤3  ) is bT b, 
*
1/2 space. Let A = {b } Clearly A is an 

ig*-closed set but not an i-closed set.  Hence (X , ,2  ≤3  ) is not a iT i
*
1/2

 
  space.  
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EXAMPLE 3.47.  Let X = {a , b , c} ,  ,6  = {  , X , {a} , {b} , {a,b} , {a , c}} and               ≤7 = 

{(a , a) , (b , b) , (c , c) ,(b , c) , (c , a) , (b , a)}. Clearly (X , ,6  
≤7  ) is a topological ordered sp b-

closed sets are   , X    bg*- closed sets are   , X , {b} .  ig*-closed sets are , X , {c , a}. i-closed 

sets are   , X , {a , c}.  bg*-closed sets are  , X.   b-closed sets are  , X.  Clearly every ig*-closed 

set is an i-closed set. So(X , ,6  
≤7  )  is  iTi, 

*
1/2  space.  Let  

A =  {b} .  Clearly A is a bg*-closed set but  not a b-closed set.  Thus  (X  , ,6 ≤7 ) is  not a  bTb,*1/2  

space. 

THEOREM 3.48.   The spaces i T i 
*
1/2  and dT d,,1/2 are independent notions.  This will be seen in 

the following examples. 

EXAMPLE 3.49.   Let X = {a , b , c} ,  4  = {  , X , {a} , {b , c}} and ≤4 = {(a , a) , (b , b) , (c , c) , 

(c , a) , (c , b)}.  Clearly (X , ,4 ≤4 ) is a topological ordered space.  ig*-closed sets are , X , {b} , {a 

, b}. i-closed sets are   , X , {a , b}.  dg-closed sets are  , X.   d-closed sets are  , X . Here every 

dg-closed set is a d-closed set. Therefore (X , ,2  ≤3  ) is dT d, 1/2 space.   Let    A = {b }  Clearly A is 

an ig*-closed set but not an i-closed set.  Hence (X , ,2  ≤3  ) is not  a  iT i
*
1/2

 
  space.  

EXAMPLE 3.50.   Let X = {a , b , c} ,  4  = {  , X , {a} , {b , c}} and  ≤3 = {(a , a) , (b , b) , (c , 

c) , (c , a) , (c , b)}.  Clearly (X , ,4 ≤3 ) is a topological ordered space.  ig*-closed sets are , X , 

{b}. i-closed sets are   , X , {b}.  dg-closed sets are  , X , {a , b}.   d-closed sets are  , X . Here 

every ig*-closed set is an i-closed set. Therefore (X , ,2  ≤3  ) is iT i
*
, 1/2 space. Let A = {a , b }  

Clearly A is an dg-closed set but not a d-closed set.  Hence (X , ,2  ≤3  ) is not a  dT d  1/2
 
  space.  

THEOREM 3.51.   Every iTi,1/2   space is an iT1/2
*  space. 

Proof:  Let  ( X ,   , ≤ ) be a iTi,1/2   space .  We show that ( X ,   , ≤ ) is an iT ½
*  space. Let A be an 

ig*-closed subset of X.  We know that every g* -closed set is an g-closed set. Then A is an ig-closed 

subset of X.  Since ( X ,   , ≤ ) be an iTi,1/2  space and A is an ig-closed subset of X, then A is a closed 

set.  Every ig*-closed set is a closed set.  Then ( X ,   , ≤ ) is an iT1/2
*  space.  Thus every    iTi,1/2   

space is a iT ½
*  space. The converse of the above theorem need not be true.  This will be seen in the 

following example. 

EXAMPLE 3.52.  Let X = {a,b,c} ,  4  = {  , X , {a} , {a , c}} and ≤6 = {(a , a) , (b , b) , (c , c) , 

(b , a) , (a , c) , {b , c) }.  Clearly (X , ,4  
≤6  ) is a topological ordered space. 

ig-closed sets are  , X , {b , c }.   closed sets are   , X , {b} , {b , c} . i-closed sets are  

  , X .  Clearly every ig-closed set is a closed set.  Let A = { b , c}.  Clearly A is an ig-closed set but 

not an i-closed set.  Hence (X , ,4  
≤2  ) is a iT1/2   space but not a   iTi,1/2   space. 
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IV. CONCLUSION 

In this paper, we will discuss the various properties between the ig*, dg* and bg* closed type sets in 

topological spaces. 
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