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ABSTRACT

In this paper we discuss possible applications of ig*,dg* & bg*-closed type sets in Topological ordered
spaces.

KEY WORDS: Topological ordered space, closed set, g-closed set and g*-closed set.

I. INTRODUCTION

Leopoldo Nachbin [1] initiated the study of topological ordered spaces. Levine [4] introduced the
class of g-closed sets, a super class of sets in 1970. M.K.R.S. Veera Kumar [2]introduced a new class
of sets, called g*-closed sets in 2000, which is properly placed in between the class of closed sets and
the class of g-closed sets M.K.R.S. Veera Kumar [3] introduced the study of i-closed, d-closed and b-
closed sets in 2001. G.Srinivasarao introduced the study of ig-closed, dg-closed, bg-closed, ig*-
closed, dg*-closed and bg*-closed sets in 2014[5].

Il. PRELIMINARIES

Definition 2.1 A subset A of a topological space (X, 7, <) is called
An i-closed set [3] if Ais an increasing set and closed set.
A d-closed set [3] if A is a decreasing set and closed set.
A b-closed set [3] if A is a both increasing and decreasing set and a closed set.
ig-closed set [5] if icl(A)c U whenever Ac U and U isopenin (X, 7).
dg-closed [5] setif dcl(A)c U whenever Ac U and U is openin (X, 7).
6. bg-closed set [5] if bcl(A)c U whenever Ac U and U is openin (X, 7).
Theorem 2.2. [2] Every closed set is a g-closed set.
The following example supports that a g-closed set need not be closed set in general.
Example 2.3. [2] Let X={a,b,c}, [Ipll={[1[1,X, {a}} and <l = {(a,a),(b,b),(c,c),(a,b)
,(b,c),(a,c)}. Clearly (X,, [In[11I<1)is atopological ordered space. closed sets are [ 11, X, {b,
c}. gclosed sets are [ |11, X, {b}, {c}, {a,b}, {b, c}, {c,a}.Let A={c}. Clearly A is a g-closed set but
not a closed set.
Theorem 2.4. [2] Every g*-closed set is a g-closed set.
The following example supports that a g-closed set need not be a g*-closed set in general.
Example 2.5. [2] Let X={a,b,c},2 1= {[11], X, {a}}and <] = {(a,a), (b, b),(c,c),(a,b),
(b,c),(a,c)}.Clearly (X, [oponll0<1 )is atopological ordered spaces. g-closed sets are[ /[, X ,
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{b}, {c}, {ab}, {b, c}, {c,a}. g*-closed sets are , X, {b,c}.Let A={c}. Then A is a g-closed set
but not a g*-closed set.

Theorem 2.6. [5] Every i-closed set is an ig-closed set.

The following example supports that an ig-closed set need not be an i-closed set in general.

Example 2.7. [5] LetX=1{a,b,c},2 [ ={1[,X,{a}}and<2={(a,a),(b,b),(c,c),(a,b)
, (¢, b)}. Clearly (X, ™ 12 ) is a topological ordered space. ig-closed sets are @ , X, {b}, {a,
b}. i-closed sets are , X. Let A= {b} or {a, b}. Clearly A is an ig-closed set but not an i-closed
set.

Theorem 2.8.[5] Every d-closed set is a dg-closed set.

The following example supports that a dg-closed set need not be d-closed set in general.

Example 2.9. [5] Let X={a,b,c},2 111={11[,X,{a}}and<2={(a,a),(b,b),(c,c),(a,b),
(c,b)}. Clearly (X, Tinon[1<2 ) is a topological ordered space.dg-closed sets are” 1, X, {c}, {b,
c}. d-closed setsare 171, X, {b, c}.Let A= {c}. Clearly A is a dg-closed set but not a d-closed set.
Theorem 2.10. [5] Every b-closed set is a bg-closed set.

The following example supports that a bg-closed set need not be a b-closed set in general.

Example 2.11. [5] LetX={a,b,c}, 7, ={¢ ,X,{a}}and<s={(a,a),(b,b),(c,c),(a,b),
(a, c)}. Clearly (X, 7,, <3) is a topological ordered space. bg-closed sets are ¢ , X, {c}. b-closed
setsare ¢ , X. Let A = {c}.Clearly A is a bg-closed set but not a b-closed set.

Theorem 2.12. [5] Every bg-closed set is an ig-closed set.

The converse of above theorem need not be true. This will be justify from the following example.
Example 2.13. [5] Let X ={a,b,c}, 7, ={¢ ., X, {a},{b},{a,b}}and <1 ={(a,a),(b,b), (c,
c),(a,b),(b,c), (a,c)} Clearly (X, 7, <1) is a topological ordered space

Let A={c}. Clearly Aisan ig closed set but not a bg-closed set.

THEOREM 2.14. [5] Every bg-closed set is a dg-closed set.

The converse of above theorem need not be true. This will be justify from the following example.
EXAMPLE 2.15. [5] LetX={a,b,c}, 7, ={¢ , X, {a},{b} . {a,b}}and <s={(a,a), (b,
b),(c,c),(a,b),(a,c)} Clearly (X, 7,,<3) is a topological ordered space.

Let A ={a, c}. Clearly A is a dg-closed set but not a bg-closed set.

THEOREM 2.16. [5] Every b-closed set set is an i-closed set.

The converse of above theorem need not be true. This will be justify from the following example.

EXAMPLE 2.17. [5] LetX={a,b,c}, 7, ={¢ . X, {a}, {b},{a,b}}and<s={(a,a),(b,b),
(c,c),(@,b),(b,c), (a,c)} Clearly (X, 7,,<1) is a topological ordered space. i-closed sets are ¢ ,
X, {c}, {b, c}.b-closed sets are ¢ , X. Let A={c} or {b, c}. Clearly A is an i-closed set but not a

b-closed set.
THEOREM 2.18.[5] Every b-closed set is a d-closed set.
The converse of above theorem need not be true. This will be justify from the following example.

EXAMPLE 2.19. [5] LetX={a,b,c}, 7, ={¢ , X, {a},{b},{a,b}}an <={(a,a),(b,b),
(c,c),(a,b),(c,b)} Clearly (X, 7,, <2) is a topological ordered space.d-closed sets are ¢ , X,
{c},{b, c}. b-closedsetsare ¢ , X.Let A={c}or{b,c} ClearlyAisa d-closed set but not a b-

closed set.
THEOREM 2.20. [5] Every ig*-closed set is an ig-closed set.
The converse of above theorem need not be true. This will be justify from the following example.

EXAMPLE 2.21. [5] LetX={a,b,c},z, ={¢ , X, {a}}and<1={(a,a), (b, b),
(c,c),(@,b),(b,c), (a,c)}. Clearly (X, z,,<1) is a topological ordered space. ig-closed
setsare ¢ , X, {c}, {b, c}.ig"-closed setsare ¢, X, {b,c}. Let A={c}. ClerlyAisa
ig-closed set but not a ig*™-closed set.

THEOREM 2.22. [5] Every dg™-closed set is an dg-closed set.
The converse of above theorem need not be true. This will be justify from the following example.

1841 | Vol. 7, Issue 6, pp. 1840-1850



International Journal of Advances in Engineering & Technology, Jan., 2015.
OIJAET ISSN: 22311963

EXAMPLE 2.23.[5] LetX={a,b,c},7, ={¢ , X ,{a}}and<x={(a,a), (b, b),(c,c),(a,b),
(c, b)}. Clearly (X, 7,, <) is a topological ordered space.dg-closed sets are ¢ , X, {c}, {b, c}.
dg’-closed sets are ¢ , X, {b, c}.Let A = {c}. Clearly A is an dg-closed set but not a dg”-closed

set.So the class of dg-closed sets properly contains the class of all dg*-closed sets.
THEOREM 2.24. [5] Every bg”-closed set is a bg-closed set.
The converse of above theorem need not be true. This will be justify from the following example.

EXAMPLE 2.25. [5] LetX={a,b,c},7, ={¢ , X, {a}}and <z ={(a,a), (b, b),
(c,c), (a,b),(a,c)}Clearly (X, 7,,<s) is a topological ordered space. bg"-closed sets are ¢ , X.
bg-closed sets are ¢ , X, {c}. Let A ={c}. Clearly A is bg-closed set but not a bg*-closed set. So the

class of bg-closed sets properly contains the class of all bg*-closed sets.
THEOREM 2.26. [5] Every bg*-closed set is an ig™-closed set.
The converse of above theorem need not be true. This will be justify from the following example.

EXAMPLE 2.27.[5] : Let X ={a,b,c}, 7, ={¢ , X, {a},{b,c}}and <s={(@@,a),

(b,b),(c,c),(a,b), (a,c)} Clearly (X, 75, <3) is a topological ordered space.

Let A ={b}. Clearly A is an ig™-closed set but not a bg"-closed set.
THEOREM 2.28. [5] Every bg*-closed set is an dg*-closed set.
The converse of above theorem need not be true. This will be justify from the following example.

EXAMPLE 2.29.[5] LetX={a,b,c},7, ={¢ ,X,{a},{b}.{a.b}}and <s={(a,a),(b,b),
(c,c),(a,b), (a,c)} Clearly (X, 7,, <g) is atopological ordered space. Let

A ={a, c}. Clearly A is a dg™-closed set but not a ig*-closed set. The class of all dg*-closed sets
properly contains the class of all bg"-closed sets.

THEOREM 2.30.[5] Every i-closed set is an ig™-closed set.
The converse of above theorem need not be true. This will be justify from the following example.

EXAMPLE 2.31. [5] LetX={a,b,c}, 7;={¢ ,X,{a},.{b,c}}and<s={(a, a),
(b,b),(c,c),(@,b),(c,b)} Clearly (X, 75, <4) is a topological ordered space. ig"™-closed sets

areg , X, {b,c}. i-closed setsare ¢ , X.Let A={b,c}. Clearly Aisaig™-closed set but not an i-

closed set.The class of all ig*-closed sets properly contains the class of all i-closed sets.
THEOREM 2.32. [5] Every d-closed set is a dg™-closed set.
The converse of above theorem need not be true. This will be justify from the following example.

EXAMPLE 2.32. [5] LetX={a,b,c}, 7, ={¢ , X, {a},{b,c}}and <x={(a,a),(b,b),(c
,¢),(@,b), (c,b)} Clearly (X, 7,, <2) is a topological ordered space. dg*-closed sets are ¢ , X,
{b,c}. d-closed sets are ¢ , X.Let A={b,c}. Then A isdg™-closed set but not a d-closed set. The
class of all dg*-closed sets properly contains the class of all d-closed sets.

THEOREM 2.33. [5] Every b-closed set is a bg”-closed set.
The converse of above theorem need not be true. This will be justify from the following example.

EXAMPLE 2.34. [5] LetX={a,b,c}, 7, ={¢ ,X,{a}, {b}, {a,b}{a,c}} and <=
{(a,a),(b,b),(c,c),(b,c),(c,a),(b,a)} Clearly (X, 75, <) isatopological ordered space.bg™-

closed sets are ¢ , X, {b}. b-closed sets are ¢ , X. Let A ={b}. Then A is bg"-closed set but not a b-
closed set. The class of all bg™-closed sets properly contains the class of all b-closed sets.

THEOREM 2.35. [5] Every bg*-closed set is an ig-closed set.
Then every bg™-closed set is an ig-closed set. The converse of above theorem need not be true. This
will be justify from the following example.

EXAMPLE 2.36.[5] LetX={a,b,c}, 7, ={¢ , X, {a},{b}.{a,b}}and<zs={(a,a), (b, b)
,(c,c),(@,b),(a,c)}. Clearly (X, z;, <3)is a topological ordered space.bg™-closed sets are ¢ ,
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X. ig-closed sets are ¢ , X, {c},{b,c} Let A={c}or {b,c}. Clearly A is an ig-closed set but

not a bg”-closed set.The class of all ig-closed sets properly contains the class of all bg*-closed sets.
THEOREM 2.37. [5] Every bg-closed set is a dg-closed set.
The converse of above theorem need not be true. This will be justify from the following example.

EXAMPLE 2.38. [5] LetX={a,b,c}, 7, ={¢ . X, {a},{b},{a,b}}and <={(a,a), (b
,b),(c,c),(@,b), (c,b)}.Clearly (X, 7;,<) is a topological ordered space.bg™-closed sets are ¢ ,
X. dg-closed setsare ¢ , X, {c},{b,c}. Let A={c} or {b, c}. Clearly Aisa dg-closed set but not
a bg*-closed set.

I1l. APPLICATIONS OF G*-CLOSED TYPE SETS

DEFINITION 3.1. [5] A subset ‘A’ of (X, 7, <) is called a ig™-closed set if icl(A) < U whenever

AcU and U is a g-open in (X, 7).The class of all ig™closed subsets of (X , 7) is denoted by
IG"C(X).
DEFINITION 3.2.[5] A subset ‘A’ of (X, 7, < ) is called a dg*-closed set if dcl(A) < U
whenever Ac U and U is a g-open in (X, 7).The class of all dg*-closed subsets of (X, 7) is denoted
by DG"C(X).
DEFINITION 3.3. [5] A subset ‘A’ of (X, 7,<) is called a bg"-closed set if bcl(A) —c U
whenever Ac U and U is a g-open in (X, 7).The class of all dg*-closed subsets of (X , 7) is
denoted by BG"C(X).
DEFINITION 3.4 A topological ordered space (X,7, <) is called
i) aiTu2 space, if every ig*-closed set is closed.
ii) aqT2'space, if every dg*-closed set is closed.
iii)a pT12"space, if every bg*-closed set is closed.
DEFINITION 3.5. A topological ordered space (X,7, <) is called
i) iTi'12 space if every ig*-closed set is an i-closed set.
i) aTa 12 space if every dg*-closed set is a d-closed set.
iii) bTb 12 Space if every bg*-closed set is a b-closed set.
THEOREM 3.6. Every iT1," space ispT12" space.
Proof: Let (X, 7 ) be iTi." space. We show that (X, 7 ) is »T12" space.Let A be a bg*-closed
subset of X. Then A is an ig*-closed subset of A.Since (X, 7 ) isan T1." - space then A is closed.
Every bg*-closed subset of X is a closed set. Hence (X, 7 ) is pT12 space. Thus every Ty,  space
is pT12" space. The converse of the above theorem need not be true. This will be justify from the
following example.
EXAMPLE 3.7. LetX={a,b,c}, 7, ={¢ , X, {a},{b,c}}and <>={(a,a),(b,b),(c,c)
,(@,b), (c,b)} Clearly (X, 7,,<2) is a topological ordered space. bg*-closed sets are¢, X .
closed setsare ¢, X, {a}, {b, c}. ig*-closed sets are ¢, X, {b}, {a, b}. Here every bg*-closed
set is a closed set. Therefore (X, 7,, <s ) isvT12" space. Let A = {a, b}. Clearly A is an ig*-closed

set but not a closed set. Hence (X, 7,, <s)isnotaT.." space.

THEOREM 3.8. Every ¢T12" space ispT12" space.

Proof: Let (X, 7 ) be 4Ti." space. We show that (X, 7 ) is nT1." space.Let A be a bg*-closed
subset of X. Then A is an dg*-closed subset of A.Since (X, 7 ) isan ¢T12" - space then A is closed.
Every bg*-closed subset of X is a closed set.Hence (X, 7 ) is T2 space. Thus every ¢T1." space
is pT12" space.The converse of the above theorem need not be true. This will be justify from the
following example.

EXAMPLE 3.9. LetX={a,b,c}, 7, ={¢ ,X,{a}.{b,c}}and <s={(a,a),(b,b),(c,c)
, (@, b), (a,c)} Clearly (X, 7,,<s) is a topological ordered space. bg*-closed sets are ¢, X .
closed setsare ¢, X, {a}, {b, c}. dg*-closed sets are ¢, X, {b} . Here every bg*-closed set is a
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closed set. Therefore (X, 7,, <s ) issT12" space. Let A = { b}. Clearly A is an dg*-closed set but not

a closed set. Hence (X, 7,,<3)isnotaqTu." space.

THEOREM 3.10. Ty2" space and 4Ti2" space are independent notions. This will be seen in
the following examples.

EXAMPLE 3.11. LetX={a,b,c}, 7,={¢ ,X,{a},{b,c}}and <={(a,a),(b,b),(c,
c),(a,b),(c,b)} Clearly (X, r,,<2) is a topological ordered space. bg*-closed sets are¢, X .
closed setsare ¢, X, {a}, {b, c}. ig*-closed sets are ¢, X, {b}, {a, b}. Here every bg*-closed
set is a closed set. Therefore (X, 7,, <s ) isvT12" space. Let A = {a, b}. Clearly A is an ig*-closed
set but not a closed set. Hence (X, 7,, <s)isnota T space.

EXAMPLE 3.12. LetX={a,b,c}, 7, ={¢ ,X,{a},{b,c}}and <s={(a,a),(b,b),(c,
c),(a,b),(a,c)} Clearly (X, z,,<3) is atopological ordered space. bg*-closed sets areg, X .
closed setsare ¢, X, {a}, {b, c}. dg*-closed sets are ¢, X, {b} . Here every bg*-closed set is a
closed set. Therefore (X, 7,, <s ) ispTw2 space. Let A ={ b}. Clearly A is an dg*-closed set but not

a closed set. Hence (X, 7,,<s)isnotaqTy2" space.

THEOREM 3.13. Every Tii, spaceisanT;*1, space.

Proof : Let (X, 7 ,<)beanTii space. Weshowthat (X, 7 ,<)isanTi*y, space.

Let A be an ig*-closed subset of X. Then A is an ig-closed subset of X. Since (X, 7 ,<)beanTiie
space and A is an ig-closed subset of X, then A is an i-closed set. Every ig*-closed set is an i-closed
set. Then (X, 7 ,<)isan Ti*i» space. Thus every iTii> space is an iTi*i» space. The converse
of the above theorem need not be true. This will be justfy from the following example.

EXAMPLE 3.14. LetX={a,b,c}, 7, ={¢ , X, {a}}and <x={(@,a),(b,b),(c,c),(a,b)
, (¢, b)}. Clearly (X, 7,,<2) is a topological ordered space. ig-closed sets are ¢, X, {b}, {a, b}.
ig*-closed sets are ¢, X . i-closed sets are ¢, X . Here every ig*-closed set is an i-closed set . Let

A = {b} or {a, b}. Clearly A is an ig-closed set but not an i- closed set. Hence (X, 7,,<z) is an
iTi*12 space and nota iTii space.

THEOREM 3.15. Every ¢4Tq,12 Spaceisan 4Tq,*12 space.

Proof: Let (X, 7 ,<)beaqTq, 12 Space. We showthat (X, 7 ,<)isanqTq *12 Space.

Let A be a dg*-closed subset of X. Then A is a dg-closed subset of X.Since (X, 7 ,<)bean ¢Tq,12
space and A is a dg-closed subset of X, then A is a d-closed set.Every dg*-closed set is a d-closed set.
Then (X, 7 ,<)isanqTq, *1» Space. Thusevery  ¢Tq 12 Spaceisaqlq, >z space. The
converse of the above theorem need not be true. This will be justify from n the following example.
EXAMPLE 3.16. LetX={a,b,c}, 7, ={¢ ,X,{a}}and <¢={(a,a),(b,b),(c,c),(b,a)
,(@,c), (b,c)} Clearly (X, 7,,<s) is a topological ordered space. dg-closed sets are ¢, X, {b},
{a, b}. dg*-closed sets are ¢, X . d-closed sets are ¢, X . Here every dg*-closed set is a d-closed

set. A={b}or{a,b}. Clearly Aisadg-closed set but not a d- closed set. Hence (X, 7,,<¢) isan
dTd, *12 Spaceand nota ¢Tq 12 Space.

THEOREM 3.17. Every»Tp,12 SpaceisanpTp *12 space.

Proof: Let (X, 7 ,<)beanpTp, 12 Space. We show that (X, 7 ,< )isanyplp *12 Space. Let A
be a bg*-closed subset of X. Then A is a bg-closed subset of X. Since (X, 7 , <) be an Ty, 12 Space
and A is a bg-closed subset of X, then A is a b-closed set. Every bg*-closed set is a b-closed set. Then
(X, 7 ,<)isanpTp, *12 Space. Thusevery Ty, 12 Spaceisanls *12 Space. The converse of the
above theorem need not be true. This will be justify from the following example.

EXAMPLE 3.18. LetX={a,b,c}, 7, ={¢ ,X,{a}}and <s={(a,a),(b,b).,(c,c), (a,
b), (a,c)}. Clearly (X, 7,,<3) is a topological ordered space. bg-closed sets are ¢, X, {b, c}.
bg*-closed sets are ¢, X . b-closed sets are ¢, X . Here every bg*-closed set is a b-closed set .
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Let A= {b}or {a, b}. Clearly A is a bg-closed set but not a b- closed set. Hence (X, 7,,<3) isan

bTh ,* 12 Space and nota Ty, 12 Space.
THEOREM 3.19. The spaces ¢T ¢, * 12 and » T b, * 12 are independent notions. This will be
seen in the following examples.

EXAMPLE 3.20. LetX={a,b,c}, 75, ={¢ , X, {a}.{b},{ab}.{a.c}}and < ={(a,a)
,(b,b),(c,c),(b,c),(c,a), (b, a)} Clearly (X, 74, <7 ) is atopological ordered space. Here d-
closed setsare ¢ , X, {a, c}.dg*-closed setsare ¢ , X, {a, c} and b-closed sets are ¢ , X bg*-
closed sets are ¢ , X, {b} . Clearly every ig-closed set is an i-closed set. So(X, 74, <7) is daTa*12

space. Let A= {b}. Clearly A is a bg*-closed set but not a b-closed set. Thus (X , 74, <) is
nota Th*12 Space.

EXAMPLE 3.21. LetX={a,b,c}, 7, ={¢ , X ,{a},{b,c}}and <x={(a,a),(b,b),(c,c)
, (@, b), (c,b)} Clearly (X, 7,,<2) is a topological ordered space. bg*-closed sets are ¢, X . b-
closed setsare ¢, X . dg*-closed sets are ¢, X, {b, c} . Here every bg*-closed set is a closed set.

Therefore (X, 7,, <s ) isvTw2 space. Let A={b, c}. Clearly A is a bg*-closed set but not a b-closed

set. Hence (X, 7,, <s)isnotanT b, 12 Space.

THEOREM 3.22. Every T, spaceisanpTp *12 space.

Proof: Let (X, 7 ,<)beaiTy, space. Weshowthat (X, 7 ,<)isanpTp *1» Space. Let A bea
bg*-closed subset of X. We know that every balanced set is an increasing set and g*-closed set is a
g-closed set. Then A is an ig-closed subset of X. Since ( X, 7 , <) be an T, space and A is an ig-
closed subset of X, then A is a b-closed set. Every bg*-closed set is a b-closed set. Then (X, 7 ,<)
isany Ty, *12 Space. Thusevery Ty, 12 Spaceisa

bTb , *12 Space.The converse of the above theorem need not be true. This will be justify from the
following example.

EXAMPLE 3.23. LetX={a,b,c}, 7, ={¢ , X, {a}.{b}.{ab}}and <us={(a,a),(b,b), (c,
c),(a,b), (bc)(ac)}. Here i-closed setsare ¢ , X, {c},{b,c}. b-closed sets are ¢ , X and bg*-
closed sets are ¢ , X . Let A={c} or {b, c}. Clearly Ais an ig-closed set but not a b-closed set.

Every bg*-closed set is a b-closed set. Thus (X, 7;,<1)isauTh * 112 Space but not T, space.
THEOREM 3.24. Every Ty spaceisanplp *12 space.

Proof: Let (X, 7 ,<)beaqTp, space. Weshowthat (X, 7 ,<)isanplp *12 Space. Let Abea
bg*-closed subset of X. We know that every balanced set is a decreasing set and every g*-closed set
is a g-closed set. Then A is a dg-closed subset of X. Since ( X, 7 ,<)be an 4T, Space and A is a dg-
closed subset of X, then A is a b-closed set.Every bg*-closed set is a b-closed set. Then ( X, 7 ,<)
isanpTo,*12 Space. Thusevery ¢Tp sSpaceisanls, *12 Space. The converse of the above theorem
need not be true. This will be justify from the the following example.

EXAMPLE 3.25. LetX={a,b,c}, 7, ={¢ , X, {a}{b}{ab}}and <x={@,a),((,b),(c,
c), (a,b), (bc)(ac)}. Here dg-closed sets are ¢ , X, {c},{b,c}. b-closed sets are ¢ , X and bg*-
closed sets are ¢ , X . Let A={c} or {b, c}. Clearly A is a dg-closed set but not a b-closed set.

Every bg*-closed set is a b-closed set. Thus (X, 7;,<1)isanTh * 12 Space but not 4T Sspace.
THEOREM 3.26. Every Ty, space ispT12" space.

Proof: Let (X, 7 ,<)bean Ty, space. We show that (X, 7 ,<)isanT*1. Space.

Let A be a bg*-closed subset of X. Then A is an ig-closed subset of X. Since (X, 7 ,<)bean T
space and A is an ig-closed subset of X, then A is a closed set. Every bg*-closed set is a closed set.
Then (X, 7 ,<)isanpT1," space. ThuseveryiTi, spaceisan,Ti, " space. The converse of the
above theorem need not be true. This will be justify from the the following example.

EXAMPLE 3.27. LetX={a,b,c}, 7, ={¢ ,X,{a}}and <x={(a,a),(b,b),(c,c), (a,b),
(c,b)}. Clearly (X, 7,,<2) is a topological ordered space. ig-closed sets are ¢, X, {b}, {a, b} .
bg*-closed sets are ¢, X, {b, c}. closed sets are ¢, X, {b, c}. Here every bg*-closed set is a
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closed set. Let A ={b}or{a, b} Clearly Aisan ig-closed set but not an closed set. Hence (X,
7,,<g)isanpT12* space and nota T 12 space.

THEOREM 3.28. Every T, space ispT2 Space.

Proof: Let (X, 7 ,<)bean T, space. We show that (X, 7 ,<)isanpT*y» space.

Let A be a bg*-closed subset of X. Then A is a dg-closed subset of X. Since ( X, 7 ,<)bean qT1e
space and A is a dg-closed subset of X, then A is a closed set. Every bg*-closed set is a closed set.
Then (X, 7 ,<)isanpTy, space. Thusevery ¢Ti, spaceisanyTi2 ~ space. The converse of the
above theorem need not be true. This will be justify from the the following example.

EXAMPLE 3.29. LetX={a,b,c}, 7, ={¢ .X, {a}} and <c={(a,a),(b,b),(c,c), (a,b),
(c, b)}. Clearly (X, 7,,<2) is a topological ordered space. ig-closed sets are ¢, X, {b}, {a, b}.
bg*-closed sets are ¢, X, {b, c}. closed sets are ¢, X, {b, c}. Here every bg*-closed set is a
closed set. Let A ={b}or{a, b}. Clearly A is an ig-closed set but not an closed set. Hence (X,
7,,<g)isanpT12* space and nota T 12 space.

THEOREM 3.30. The spaces ¢ T12 * and ;i T 12 are independent notions. This will be seen in the
following examples.

EXAMPLE 3.31. LetX={a,b,c}, 7, ={¢ , X ,{a}}and <1={(a,a),(b,b),(c,c), (a,b)
,(b ,c),(a,c)} Clearly (X, 7,,<1) is a topological ordered space. ig-closed sets are ¢, X, {c},
{b, c} . dg*-closed sets are ¢, X . closed sets are ¢, X, {b , c}. Here every dg*-closed set is a
closed set. Let A={c}. Clearly A is an ig-closed set but not an closed set. Hence (X, 7,,<1)Iis
an T1, space and nota 4T space.

EXAMPLE 3.32. LetX={a,b,c}, 7, ={¢ ,X,{a},{b,c}}and <s={(a,a),(b,b),(c,
c),(a,b),(c,b)} Clearly (X, z,, <s) is atopological ordered space. dg*-closed sets are¢ , X,
{a, b}. closed setsare ¢, X, {b}, {b,c). ig-closed sets are ¢, X, {b} . Here every ig-closed set
is a closed set. Therefore (X, 7,, <3 ) isiTy2space. Let A={a , b} Clearly A isa dg*-closed set but

not a closed set. Hence (X, 7,, <s)isnotaqT % space.

THEOREM 3.33. The spaces ¢ T12 * and ,» T 12 are independent notions. This will be seen in
the following examples.

EXAMPLE 3.34. LetX={a,b,c}, 7, ={¢ ,X,{a}}and <s={(a,a),(b,b),(c,c), (a,b)
, (@, c)}. Clearly (X, 7,, <3) is a topological ordered space. bg-closed sets are ¢, X , {c}. dg*-
closed sets are ¢, X . closed setsare ¢, X, {b}, {b , c}. Here every dg*-closed set is a closed set
Let A ={c}. Clearly A is a bg-closed set but not an closed set. Hence (X, 7,, <1)is an ¢T1."
space and nota T 12 Space.
EXAMPLE 3.35. LetX={a,b,c}, 7, ={¢ , X, {a},{b,c}}and <s={(@,a),(,b),(c,
c),(a,b),(c,b)}. Clearly (X, 7,,<s) is atopological ordered space. dg*-closed setsare¢, X, {a
, b}. closed sets are @, X, {b}, {b, c). bg-closed sets are ¢, X . Here every bg-closed set is a
closed set. Therefore (X, 7,, <s ) ispT12space. Let A={a , b} Clearly Ais a dg*-closed set but not
a closed set. Hence (X, 7,, <s)isnotaqTw." space.

THEOREM 3.36. The spaces ¢ Tq12 and » T 1 12 are independent notions. This will be seen in
the following examples.

EXAMPLE 3.37. LetX={a,b,c}, 74, ={¢ , X, {a}, {b}, {ab}, {a,c}}and <=
{(a,a),(b,b),(c,c),(b,c),(c,a), (b,a)} Clearly (X, 74, <7) is a topological ordered space.
Here d-closed sets are ¢ , X, {b}, {b, c} . dg-closed sets are ¢ , X, {b}, {b, c} and b-closed sets
are ¢ , X bg*-closed setsare ¢ , X, {b}. Clearly every dg-closed set is a d-closed set. ~ So(X,
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Te, <) IS qTa12 space. Let A= {b}. Clearly A is abg*-closed set but not a b-closed set. Thus
(X, 74,<7)Iis nota Ty *12 Space.

EXAMPLE 3.38. LetX={a,b,c}, 7, ={¢ ,X,{a},{b,c}}and <={(a,a),(b,b),(c,
c),(@,b),(c,b)}. Clearly (X, r,,<2) is atopological ordered space. dg-closed sets are ¢, X, {b
, C}. d-closed sets are ¢, X. bg*-closed sets are ¢, X . b-closed sets are ¢, X Here every bg*-
closed set is a b-closed set. Therefore (X, 7,, <s ) isyTh 12 Space. Let A ={a , b} Clearly A isadg-

closed set but not a d-closed set. Hence (X, 7,, <3 )isnotaqTa12 Space.

THEOREM 3.39. The spaces ¢ Tq12 and » T "1 are independent notions. This will be seen in
the following examples.

EXAMPLE 3.40. LetX={a,b,c}, 74, ={¢ , X, {a}, {b}, {ab}, {a,c}}and <=
{(@a,a),(b,b),(c,c),(b,c),(c,a),(b,a} Clearly (X, 74, <7 ) is a topological ordered space.
Here d-closed sets are ¢ , X, {b}, {b, c} . dg-closed sets are ¢ , X, {b}, {b, c} and b-closed sets
are ¢ , X bg*-closed setsare ¢ , X, {b}. Clearly every dg-closed set is a d-closed set. =~ So(X,
Tsy <7) is qTa12 Space. Let A= {b}. Clearly A s abg*-closed set but not a b-closed set. Thus
(X, 7g,<7)is nota pTp*12 Space.

EXAMPLE 3.41. LetX={a,b,c}, 7, ={¢ . X ,{a}.{b,c}}and <>={(a,a),(b,b),(c,c)
,(@,b), (c,b)}. Clearly (X, 7,,<2) is a topological ordered space. dg-closed sets are ¢, X, {b,
c}. d-closed sets are ¢, X. bg*-closed sets are ¢, X . b-closed sets are ¢, X Here every bg*-closed
set is a b-closed set. Therefore (X, 7,, <3 ) is s T 12 Space. Let A ={a , b} Clearly A is a dg-closed

set but not a d-closed set. Hence (X, 7,, <z )isnotaqTqu2 Space.

THEOREM 3.42. The spacesiTi"12 and ¢ T 4 12 are independent notions. This will be seen in
the following examples.

EXAMPLE 3.43. LetX={a,b,c}, 7, ={¢ . X ,{a}.{b,c}}and <3={(a,a),(b,b),(c,c)
,(@,b),(c,b)}. Clearly (X, 7,, <s) is a topological ordered space. dg*-closed setsare¢, X, {a,
b}. d-closed sets are ¢, X, {b}, {b, c). bg*-closed sets are ¢, X , {b}. b-closed sets are ¢, X .
Here every bg*-closed set is a b-closed set. Therefore (X, 7,, <3 ) isuT b, "2 Space. Let A={b , c}
Clearly A is a dg*-closed set but not a d-closed set. Hence (X, 7,, <s ) isnota 4T 4'12 Space.
EXAMPLE 3.44. LetX={a,b,c}, 74, ={¢ , X, {a}, {b}, {ab}, {a,c}}and <=
{(a,a),(b,b),(c,c),(b,c),(c,a), (b, a)} Clearly (X, 74, <7 ) is a topological ordered space.
Here d-closed sets are ¢ , X, {b}, {b, c} . dg"-closed setsare ¢ , X , {b,c} and b-closed sets are
¢ , X bg*- closed sets are ¢ , X, {b} . Clearly every dg-closed set is a d-closed set. So(X,
Tg, <7) is T4 12 Space. Let A= {b}. Clearly A is abg*-closed set but not a b-closed set. Thus
(X, 7¢,<7)is nota nTh*12 Space.

THEOREM 3.45. The spaces i Ti"y. and »T 1 12 are independent notions. This will be seen in
the following examples.

EXAMPLE 3.46. LetX={a,b,c},7, ={¢ ,X,{a}, {b,c}}and<,={(@a,a), (b,b), (c,0),
(c,a),(c,b)}. Clearly (X, 7,,<4) is atopological ordered space. ig*-closed sets are ¢, X, {b}, {a
, b}. i-closed setsare ¢, X, {a, b}. bg*-closed sets are ¢, X. b-closed sets are ¢, X . Here every
bg*-closed set is a b-closed set. Therefore (X, 7,, <s ) isuT b, vz Space. Let A ={b } Clearly A is an
ig*-closed set but not an i-closed set. Hence (X, 7,, <s)isnotaiT i1z space.

1847 | Vol. 7, Issue 6, pp. 1840-1850



International Journal of Advances in Engineering & Technology, Jan., 2015.
OIJAET ISSN: 22311963

EXAMPLE 3.47. LetX={a,b,c}, 74, ={¢ . X,{a}, {b},{ab},{a,c}}and <=

{@,a,({m,b),(c,c),(b,c),(c,a), (b, a)} Clearly (X, 74, <7) is a topological ordered sp b-
closed sets are ¢ , X bg*- closed sets are ¢ , X, {b} . ig*-closed sets are¢, X, {c, a}. i-closed
setsare ¢, X, {a, c}. bg*-closed sets are ¢, X. b-closed sets are ¢, X. Clearly every ig*-closed

setis an i-closed set. So(X , 74, <7) is iTj "1z space. Let

A = {b}. Clearly A is a bg*-closed set but not a b-closed set. Thus (X , 74,<7)is nota »Th*12

space.
THEOREM 3.48. The spaces i Ti"1> and 4T q,12 are independent notions. This will be seen in
the following examples.

EXAMPLE 3.49. LetX={a,b,c}, 7, ={¢ , X, ,{a},{b,c}}and<s={(a,a),(b,b),(c,c),
(c,a),(c,b)}. Clearly (X, 7,,<4) is atopological ordered space. ig*-closed sets are ¢ , X, {b}, {a
, b}. i-closed sets are ¢, X, {a, b}. dg-closed sets are ¢, X. d-closed sets are ¢, X . Here every
dg-closed set is a d-closed set. Therefore (X, 7,, <s ) isdT ¢ 125pace. Let A={b} Clearly Ais
an ig*-closed set but not an i-closed set. Hence (X, 7,, <s)isnot a iT ;12 space.

EXAMPLE 350. LetX={a,b,c}, 7,={¢ ,X,{a},{b,c}}and <s={(@,a),(b,b),(c,
c),(c,a),(c,b)} Clearly (X, 7,,<3) is a topological ordered space. ig*-closed sets are¢@, X ,
{b}. i-closed sets are ¢, X, {b}. dg-closed sets are ¢, X, {a, b}. d-closed sets are ¢, X . Here
every ig*-closed set is an i-closed set. Therefore (X , 7,, <s ) is iT i’ 12 space. Let A={a,b}

Clearly A is an dg-closed set but not a d-closed set. Hence (X, 7,, <s)isnota 4T 4 12 Space.
THEOREM 3.51. EveryiTii2 spaceisaniTiy," space.

Proof: Let (X, 7 ,<)beaiTi12 space. We showthat (X, 7 ,<)isaniT space.Let A bean
ig*-closed subset of X. We know that every g* -closed set is an g-closed set. Then A is an ig-closed
subset of X. Since (X, 7 ,<)bean Ti12 space and A is an ig-closed subset of X, then A is a closed
set. Every ig*-closed set is a closed set. Then ( X, 7 ,<)isan Tiy," space. Thusevery Tiu
space is a iT+ space. The converse of the above theorem need not be true. This will be seen in the
following example.

EXAMPLE 3.52. LetX={ab,c}, 7, ={¢ ., X, ,{a},{a,c}}and <c={(@,a),(b,b),(c,c),
(b,a),(,c),{b,c)}. Clearly (X, 7,, <e¢) is atopological ordered space.

ig-closed setsare ¢, X, {b,c}. closedsetsare ¢, X, {b},{b,c}.i-closed sets are

¢, X . Clearly every ig-closed set is a closed set. Let A={b,c}. Clearly A isan ig-closed set but

not an i-closed set. Hence (X, 7,, <2 )isaiT1y2 space butnota iTiw. space.
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IV. CONCLUSION

In this paper, we will discuss the various properties between the ig*, dg* and bg* closed type sets in
topological spaces.
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