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ABSTRACT 

This paper investigates the stochastic stability of a four species syn-ecosystem with bionomic harvesting of both 

victim (prey) and killer (predator) species. The necessary conditions for the existence of positive solutions are 

obtained at different steady states. Moreover we analyzed the local and global stability of deterministic model. 

The likelihood of survival of bio-economic balance is being conversed. We investigated the inhabitant intensities 

of fluctuations around the interior equilibrium due to noise. We also discussed the physical significance of the 

population variances on stability. Finally, we carried out the given numerical simulations to visualize the 

analytical results using Matlab.  

KEYWORDS: Commensal, steady state, Routh-Hurwitz criteria, global stability, bionomic harvesting,   

stochastic perturbation, Fourier transforms. 

I. INTRODUCTION 

There has been a rising curiosity in the study of harvesting and randomly fluctuating driving forces in 

a prey-predator-host-commensal system. It is observed in nature that species do not exist in solitary. 

While species are in the presence of harvesting and randomly fluctuating driving forces, they fight for 

food, space and are predated by other species. Consequently it is more of natural significance to 

consider the effect of interaction between species when we study the dynamical behaviour of 

conventional syn-ecosystem models. So a suitable mathematical model is required to study the effect 

of harvesting and noise on the interacting species.  

Moreover ecology is the study of the inter-relationship between creatures and their surroundings. As it 

is usual that when there are two or more species live in a common territory, they interact with each 

other in dissimilar ways. Mathematical modeling has been playing an important role for the last half a 

century in explaining several phenomena that are concerned with individuals or groups in nature. 

Lotka [1] and Volterra [2] established theoretical ecology momentously and opened new epochs in the 

filed of life and biological sciences. The Ecological interactions can be broadly classified as 

Ammensalism, Commensalism, Competition, Mutualism, Neutralism, Predation and Parasitism which 

are based on studies carried out by researchers on the inter-relationship between creatures. 

It is noteworthy to mention that the general concept of modeling has been presented in the treatises of 

Meyer [3], Cushing [4], Kapur [5, 6], Srinivas [7] who studied competitive ecosystem of two species 

and three species with limited and unlimited resources. On the other hand Laxminarayan and Pattabhi 

Ramacharyulu [8] studied prey-predator ecological models with partial cover for the prey and 

alternate food for the predator. At the same time, Archana Reddy [9] and Bhaskara Rama Sharma [10] 

investigated diverse problems related to two species competitive systems with time delay by 

employing analytical and numerical techniques, Phani Kumar [11] studied some mathematical models 

of ecological commensalism and Ravindra Reddy [12] discussed on the stability of two mutually 

interacting species with mortality rate for the second species. Further Srilatha [13, 14] and Shiva 
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Reddy [15] studied stability analysis of three and four species. Hari Prasad and Pattabhi 

Ramacharyulu [16-21] discussed on the stability of a three and four species syn-ecosystems. The 

present authors [22-25] investigated the stability of three species and four species with stage structure, 

optimal harvesting policy and stochasticity. Hari prasad [26], Kar [27], Carletti [28] and Nisbet [29] 

inspired us to do the present investigation on the analytical and numerical approach of a emblematical 

four species syn-ecosystem. 

The paper is organized as follows: Section 1 is a major part that deals with the introduction we have 

just seen. It records our research and previous research that has been carried out on the syn-

ecosystems. Section 2 describes the mathematical model (2.1)-(2.4). Further we analyze the stability 

of deterministic model (3.1)-(3.4) in section 3 that consists of four sub-sections on steady states, local 

stability and global stability. In section 4, we compute analytical estimates of the population variances 

of the model (2.1)-(2.4). Physical significances of population variances are given in section 5. The 

given computer simulations in section 6 helps us to validate the theoretical results. Section 7 is based 

on the conclusions and section 8 highlights the future scope of the present work. 

II. MATHEMATICAL MODEL 

In this present paper, we assume the presence of randomly fluctuating driving forces on the growth of 

the species , 1,2,3,4iS i   at time ‘ t ’ of a conventional syn-eco system. The table (2.1) exhibits some 

of the real examples of the present syn-eco system. The figure (2.1) represents the system where four 

species are living together with the following suppositions: (i) The system comprises of a  prey ( 1S ), 

predator ( 2S ) two hosts 3S  and 4S   (ii) 1S is prey of 2S    (ii) 1S is commensal of 3S  (iii) 2S is 

predator of 1S  (iv) 2S is commensal of 4S  (v) 3S  is host of  1S  and (vi) 4S is host of  2S  which  

results the following stochastic system with ‘additive noise’. Let ( )x t , ( )y t , ( )z t and ( )w t  be the 

population densities of species 1S , 2S , 3S  and 4S  respectively at time instant ‘ t ’. Let 1a , 2a , 3a and 

4a  be the natural growth rates of species 1S , 2S , 3S  and 4S  respectively. Keeping these in view and 

following [26-29], the dynamics of the stochastic system may be governed by the following nonlinear 

differential equations: 

 
2

1 11 12 13 1 1 1 1( )
dx

a x a x a xy a xz q E x t
dt

                                                            (2.1) 

2

2 22 21 24 2 2 2 2 ( )
dy

a y a y a xy a yw q E y t
dt

                                           (2.2) 

2

3 33 3 3( )
dz

a z a z t
dt

                                          (2.3) 

2

4 44 4 4 ( )
dw

a w a w t
dt

                     (2.4) 

In the above model 11a , 22a , 33a  and 44a are self inhibition coefficients of species 1S , 2S , 3S  

and 4S  respectively. 12a
 

is the interaction coefficient of 1S due to 2S , 21a
 

is the interaction 

coefficient of 2S  due to 1S , 13a  is coefficient of commensal for 1S  due to the host 3S , 24a  is the 

coefficient of commensal for 2S  due to the host 4S , 1K , 2K , 3K  and 4K  are the carrying capacities 

of species 1S , 2S , 3S  and 4S  respectively, where 1 1 11/K a a ; 2 2 22/K a a ; 3 3 33/K a a , 

4 4 44/K a a . 1q , 2q  are the catchability coefficients of species 1S , 2S  respectively. 1E , 2E  are the 

efforts applied to harvest the species 1S , 2S  respectively. 1 , 2 , 3  and 4  are real constants and  

   1 2 3 4( ), ( ), ( ), ( )t t t t t      is a four dimensional Gaussian white noise process agreeable  
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  0; 1,2,3,4iE t i             (2.5)                                                             

     ; 1,2,3,4i j ijE t t t t i j                                                                     (2.6) 

 where ij  and   are Kronecker and Dirac delta functions respectively. In addition to the variables 

x , y , z , w  the model parameters 1a , 2a , 3a , 4a , 11a , 22a , 33a , 44a , 12a , 21a , 13a , 24a are alleged 

to be non negative constants.     

 

Figure 2.1: represents schematic idea of the four species living together 

Table 2.1 represents some real examples of the system (2.1)-(2.4) 

 

 

 

 

 

               

                      

III. STABILITY ANALYSIS OF DETERMINISTIC MODEL 

In the absence of randomly fluctuating driving forces on the growth of the species, the model system 

(2.1)-(2.4) reduces to 

   1 1 1 11 12 13

dx
x a q E a x a y a z

dt
                                                                         (3.1) 

   2 2 2 22 21 24

dy
y a q E a y a x a w

dt
                                                       (3.2) 

 3 33

dz
z a a z

dt
                                                     (3.3) 

 4 44

dw
w a a w

dt
                               (3.4) 

Throughout our study let us suppose that 

 1 1 1 0a q E  and 2 2 2 0a q E                        (3.5) 

3.1 Steady States 

Example S1 S2 S3 S4 

1 Beetles Small fish phytoplankton Zooplankton 

2 Small bird Man Cow Dog 

3 Bugs Insects Rabin bird Squirrel 

4 Rabbit Wolf Bushes Shelter-tree 

5 Goat Tiger E-coli Soil bacteria 
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In this section, we present the basic outcomes on the nonnegative equilibriums of the model (3.1)-

(3.4) namely 0(0,0,0)L , 1( , ,0,0)L x y , 2( , , ,0)L x y z  
 and 

* * * *

3( , , , )L x y z w  which are attained 

by solving 0x y z w      

Case (i): 0(0,0,0)L  : The population is extinct and this always exists. 

Case (ii): 1( , ,0,0)L x y : Here x and y are positive solutions of 0x  and 0y  . We get   

 
   21 1 1 1 11 2 2 2

12 21 22 11

1
y a a q E a a q E

a a a a
     

                        (3.1.1) 

 
   22 1 1 1 12 2 2 2

12 21 22 11

1
x a a q E a a q E

a a a a
     

                     (3.1.2) 

For x  to be positive, we must have 22 2 2 2

12 1 1 1

a a q E

a a q E





                                                       (3.1.3) 

Case (iii): 2( , , ,0)L x y z  
: Here x , y

and z are positive solutions of 0x  0y   and 0z  . We 

get  
 

   22 3 13 33 22 1 1 1 33 12 2 2 2

33 12 21 22 11

1
x a a a a a a q E a a a q E

a a a a a

       
          (3.1.4) 

             
 

   21 3 13 33 21 1 1 1 33 11 2 2 2

33 12 21 22 11

1
y a a a a a a q E a a a q E

a a a a a

       
           (3.1.5) 

             3

33

a
z

a

                  (3.1.6) 

For x  to be positive, we must have 22 2 2 2

12 1 1 1

a a q E

a a q E





                                                       (3.1.7) 

Case (iv): 
* * * *

3( , , , )L x y z w (The interior equilibrium): Here ,x y 
, z and w

 are positive solutions 

of 0x  , 0y   , 0z   and 0w  .  

We get   3

33

a
z

a

                                                         (3.1.8) 

               4

44

a
w

a

                                                                   (3.1.9) 

 

 

 

44 13 3 22 33 44 22 1 1 1 12 33 24 4*

33 44 12 21 22 11 12 33 44 2 2 2

1 a a a a a a a a q E a a a a
x

a a a a a a a a a a q E

   
  

    

         (3.1.10) 

 

 

 

44 13 3 21 11 33 24 4 33 44 21 1 1 1*

33 44 12 21 22 11 33 44 11 2 2 2

1 a a a a a a a a a a a a q E
y

a a a a a a a a a a q E

   
  

    

       (3.1.11) 

For 
*x  to be positive we must have the following:  

3 12 33 24

4 44 13 22

a a a a

a a a a
                          (3.1.12)                                                                                                                      

22 2 2 2

12 1 1 1

a a q E

a a q E





             (3.1.13)      

The similar work has been carried out by ChaoLiu [30].  

3.2. Local Stability  

We now analyze the local stability of the interior steady state [31]. The Variational matrix of the 

system (3.1)-(3.4) at 
* * * *

3( , , , )L x y z w is 
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* * *

11 12 13

* * *

21 22 24

3

4

0

0

0 0 0

0 0 0

a x a x a x

a y a y a y
J

a

a

  
 

 
 
   

                                                                  (3.2.1) 

The characteristic equation of (3.2.1) is in the form of 
4 3 2 0A B C D           (3.2.2) 

where
11 3 4 0A a x a a    ,

*

11 22 11 3 11 4 3 4 0B a a x y a a x y a a x y a a         ,

*

11 22 4 11 22 3 21 3 21 4 0C a a a x y a a a x y a a x y a a x y           , 

* *

11 22 3 4 21 3 4 0D a a a a x y a a a x y    .  

The system is locally asymptotically stable if all the eigen values of the above characteristic equation 

have negative real parts. By Routh-Hurwitz criteria, it follows that all eigen values  

of (3.2.2) have negative real parts if and only if  0, 0,  0, A C D  
2( )C AB C A D  ,  

2 2( ) 0D ABC A D C   . Hence  
* * * *

3( , , , )L x y z w  is locally asymptotically stable. 

3.3. Global Stability  

Now we discuss the global stability [32] of the equilibrium points  1( , ,0,0)L x y  and 

* * * *

3( , , , )L x y z w of the system (3.1)-(3.4).                                                                               

Theorem (3.3.1): The Equilibrium point 1( , ,0,0)L x y  is globally asymptotically stable. 

Proof: let us consider the following Lyapunov function 

1( , ) ln ln
x y

V x y x x x l y y y
x y

    
         

     
 

Differentiating V w.r.to ‘ t ’ we get    

1

dV x x dx y y dy
l

dt x dt y dt

   
    
   

; 

       
2 2

11 1 22 1 21 12

dV
a x x l a y y l a a x x y y

dt
         

By choosing 1 12 21/l a a ,    
2 222 12

11

21

/
a a

dV dt a x x y y
a

 
     

 
< 0 

Hence the equilibrium point 1( , ,0,0)L x y   is globally asymptotically stable.  

Theorem (3.3.2): The interior equilibrium point 
* * * *

3( , , , )L x y z w  is globally asymptotically stable 

if
2

21 22 12 244a a a a and
2

11 134a a . 

Proof: To find the condition for global stability at
* * * *

3( , , , )L x y z w , we construct the Lyapunov 

function       
* * * * * * * * *

1 2( , , , ) ( ) ln( / ) ( ) ln( / ) ( ) ln( / )V x y z w x x x x x l y y y y y l z z z z z                  
  

 

                                                                                                                   
* * *

3 ( ) ln( / )l w w w w w      

where 1l  , 2l and  3l are positive constants. 

   

             * * *

1 2/ / / / / / /dV dt x x x dx dt l y y y dy dt l z z z dz dt          
     

    
      *

3 / /l w w w dw dt  
 

;

 
       * * * *

11 12 13( / )dV dt x x a x x a y y a z z        
 
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                         * * * *

1 22 21 24l y y a y y a x x a w w        
 

 

                                           * * * *

2 33 3 44l z z a z z l w w a w w          
   

; 

By choosing  12
1 2 3

21 33 44

1 1
; ;

a
l l l

a a a
    

       

       

2 2
* * * *

11 13 12 22 21

2 2
* * * *

12 24 21

/
( / )

/

a x x a x x z z a a a y y
dV dt

a a a y y w w z z w w

      
 
 

        

 

   
TX AX   

where 

13

13

11 2

*

12 22 12 24

*

21 21

*

2

*

12 24

21

0 0

0 0
2

;
0 1 0

0 0 1
2

a

a

a

x x a a a a

a ay y
X A

z z

w w a a

a





 
 

          
   
       

  

 

The system is globally stable if the derivative of Lyapunav’s function V  is negative definite, that is if 

the matrix A is positive definite, that is if the principal minors of A  (say) , 1,2,3,4iM i  are 

positive. The principle minors are positive if 
2

21 22 12 244a a a a  and 
2

11 134a a . Hence the system is 

globally stable in the above parametric domain.  

3.4. Bionomic Equilibrium 

It is the combination of biological balance and economic balance. In section (3.1), we have conversed 

about the biological balance which is given by 0x y z w    . When the total profit obtained by 

selling the yielded biomass equals the total cost utilized in yielding it, then we say that the bionomic 

balance achieved. Let 1c be the constant harvesting cost of species 1S per unit effort and 2c be the 

constant harvesting cost of species 2S per unit effort. Let 1p  be the constant price of species 1S per 

unit biomass and  2p  be the constant price of species 2S  per unit biomass. The revenue at any time is 

given by 

     1 2 1 1 1 1 2 2 2 2, , , , ,A x y z w E E p q x c E p q z c E                                              (3.4.1) 

Now if 1 1 1c p q x  and 2 2 2c p q y , then the economic rent obtained from the fishery becomes 

negative and the fishery will be closed.  Hence for the existence of bionomic equilibrium, it is 

assumed that  1 1 1c p q x  and 2 2 2c p q y .                          (3.4.2) 

The bionomic equilibrium  1 2( ) ,( ) , ( ) , ( ) , ( ) , ( )x y z w E E       is the positive solution of   

         0.x y z w A                              (3.4.3) 

By solving (3.4.3) we get,   

1 1 1( ) /( );x c p q                                                                                              (3.4.4) 

2 2 2( ) /( );y c p q                                                                                                    (3.4.5)                         

3 33( ) / ;z a a                  (3.4.6) 

4 44( ) / ;w a a                                                                (3.4.7) 

 1 1 1 11 1 1 1 12 2 2 2 13 3 33( ) (1/ ) ( ) /( ) ( ) /( ) ( ) /E q a a c p q a c p q a a a                               (3.4.8) 

   2 2 2 22 2 2 2 21 1 1 1 24 4 44(1/ ) ( ) /( ) ( ) /( ) ( ) /E q a a c p q a c p q a a a

                  (3.4.9) 
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1( ) 0E    when 1 13 3 33 11 1 1 1 12 2 2 2( ) / ] [( ) /( ) ( ) /( )a a a a a c p q a c p q   .                  (3.4.10)  

 2( ) 0E    when 2 21 1 1 1 24 4 44 22 2 2 2( ) /( ) ( ) / ] [( ) /( )a a c p q a a a a c p q   .               (3.4.11) 

If 1 1( ) ( )E E  and 2 2( ) ( )E E  , then the total cost utilized in harvesting the species population 

would exceed the total revenues obtained from the ecological system. Hence some people would be in 

loss and naturally they would withdraw their participation from the system. 

Hence 1 1( ) ( )E E  and 2 2( ) ( )E E  cannot be maintained indefinitely.  

If 1 1( ) ( )E E   and 2 2( ) ( )E E  , then the ecological system is more profitable, and hence in an 

open access system, it would attract more and more people. This will have an increasing effect on the 

yielding effort. Hence 1 1( ) ( )E E  and 2 2( ) ( )E E   cannot be continued indefinitely. 

IV. STOCHASTIC ANALYSIS 

In this section, we compute the population intensities of fluctuations (variances) of the system (2.1)-

(2.4) around the positive equilibrium 
* * * *

3( , , , )L x y z w  due to noise, according to the method 

introduced by Nisbet and Gurney [29] in 1982. The method was successfully applied by Prasenjit Das 

[33] and M.N. Srinivas [34]. Now we assume the presence of randomly fluctuating driving forces on 

the deterministic growth of the species , 1,2,3iS i   of the system (3.1)-(3.4) at time ‘ t ’ which results 

in the stochastic system (2.1)-(2.4) with ‘additive white noise’ process satisfying (2.5) and (2.6). Let 

us consider the perturbation technique as follows: 

Let  
* * * *

1 2 3 4( ) ( ) ; ( ) ( ) ; ( ) ( ) ; ( ) ( ) ;x t u t S y t u t P z t u t T w t u t U                    (4.1)

  31 2 4( )( ) ( ) ( )
; ; ; ;

du tdu t du t du tdx dy dz dw

dt dt dt dt dt dt dt dt
                   (4.2) 

Using (4.1) and (4.2) in (2.1)-(2.4), we identify the respective linear system as  

* * *1
11 1 12 2 13 3 1 1

( )
( ) ( ) ( ) ( )

du t
a u t S a u t S a u t S t

dt
                                      (4.3) 

* * *2
22 2 21 1 24 4 2 2

( )
( ) ( ) ( ) ( )

du t
a u t P a u t P a u t P t

dt
                    (4.4) 

*3
33 3 3 3

( )
( ) ( )

du t
a u t T t

dt
                              (4.5) 

*4
44 4 4 4

( )
( ) ( )

du t
a u t U t

dt
                              (4.6) 

Using Fourier transform methods on the linear system (4.3) - (4.6), we get 

  
* * *

1 1 11 1 12 2 13 3( ) ( ) ( ) ( ) ( )i a S u a S u a S u                                 (4.7) 

  
* * *

2 2 21 1 22 2 24 4( ) ( ) ( ) ( ) ( )a P u i a P u a P u                                   (4.8) 

*

3 3 33 3( ) ( ) ( )i a T u                                 (4.9) 

*

4 4 44 4( ) ( ) ( )i a U u                     (4.10) 

The above system (4.7) - (4.10) can be represented in the matrix form as 

     A u                                  (4.11) 

where  

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
;

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

A A A A

A A A A
A

A A A A

A A A A

   

   


   

   

 
 
 
 
 
 

   

1 1 1

2 2 2

3 3 3

4 4 4

( ) ( )

( ) ( )
; ;

( ) ( )

( ) ( )

u

u
u

u

u

  

   
  

  

   

   
   
    
   
   
   

  



International Journal of Advances in Engineering & Technology, Sept. 2013. 

©IJAET                                                                                                          ISSN: 22311963 

1578 Vol. 6, Issue 4, pp. 1571-1584  

 

* * *

11 11 12 12 13 13 14

* * *

21 21 22 22 23 24 24

*

31 32 33 33 34

*

41 42 43 44 44

( ) ( ); ( ) ; ( ) ; ( ) 0;

( ) ; ( ) ( ); ( ) 0; ( ) ;

( ) 0; ( ) 0; ( ) ( ); ( ) 0;

( ) 0; ( ) 0; ( ) 0; ( ) ( );

A i a S A a S A a S A

A a P A i a P A A a P

A A A i a T A

A A A A i a U

    

    

    

    

     

      

    

    

         (4.12) 

Equation (4.11) can also be written as         
1

u A   


     

Let  
1

( )A B 


    then 
 

 
( )

Adj A
B

A





 and    ( )u B                        (4.13) 

where  ( ) ( ) ( )A R iI     

4 2 * * 2 * * 2 * * 2 * *

33 44 22 44 22 33 11 44

2 * * 2 * * 2 * * * * * *

11 33 11 22 12 21 11 22 33 44

* * * *

12 21 33 44

( )R a a T U a a P U a a P T a a S U

a a S T a a S P a a S P a a a a S P T U

a a a a S P T U

     

  

    

   



                   (4.14) 

3 * 3 * 3 * 3 * * * *

11 22 33 44 22 33 44

* * * * * * * * *

11 33 44 11 22 44 11 22 33

* * * * * *

12 21 33 12 21 44

( )I a S a P a T a U a a a P T U

a a a S T U a a a S P U a a a S P T

a a a S P T a a a S P U

     

  

 

     

  

 

 

We now depict some of the necessary preliminaries of the random population function. If the function 

( )Y t  has a zero mean value, then the fluctuation intensity (variance) of its components in the 

frequency interval  , d    is ( )YS d  , where ( )YS  is spectral density of Y  and is defined as  

 
2

( ) limY
T

Y
S

T





                            (4.15) 

If  Y  has a zero mean value, the inverse transform of ( )YS  is the auto covariance function  

 
1

( )
2

i

Y YC S e d  






                  (4.16) 

The corresponding variance of fluctuations in ( )Y t  is given by  

2 1
(0) ( )

2
Y Y YC S d  







                 (4.17) 

and the auto correlation function is the normalized auto covariance 
( )

( )
(0)

Y
Y

Y

C
P

C


           (4.18) 

For a Gaussian white noise process, it is 

 
   

ˆ
lim

ˆi j

i j

T

E
S

T
 

   




      

       

ˆ ˆ

2 2
( )

ˆ
ˆ ˆ

2 2

1
lim

ˆ

T T

i t t

i j ij
T

T T

E t t e dt dt
T

  
 



 

                                        (4.19) 

From (4.13), we have      
4

1

, 1,2,3,4i ij j

j

u B i   


              (4.20) 

From (4.14) we have    
4

2

1

, 1,2,3,4
iu j ij

j

S B i  


              (4.21) 
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Hence by (4.17) and (4.21), the intensities of fluctuations of the variables  , 1,2,3,4iu i   are given 

by  
4

2
2

1

1
( ) ; 1,2,3,4

2iu j ij

j

B d i   




 

                (4.22) 

That is, the variances of , 1,2,3,4iu i  are obtained as 

1

2 2 2 22

1 11 2 12 3 13 4 14

1
( ) ( ) ( ) ( ) ;

2
u B d B d B d B d            



   

   

  
    

  
   

 

2

2 2 2 22

1 21 2 22 3 23 4 24

1
( ) ( ) ( ) ( ) ;

2
u B d B d B d B d            



   

   

  
    

  
   

 

3

2 2 2 22

1 31 2 32 3 33 4 34

1
( ) ( ) ( ) ( ) ;

2
u B d B d B d B d            



   

   

  
    

  
   

 

4

2 2 2 22

1 41 2 42 3 43 4 44

1
( ) ( ) ( ) ( )

2
u B d B d B d B d            



   

   

  
    

  
   

 

                                                                                                                                            (4.23) 

where  ( ) ; , 1,2,3,4
( ) ( )

mn mn
mn

X iY
B m n

R iI


 


 


 

2 * 2 * 2 * * * *

11 22 33 44 22 33 44 ;X a P a T a U a a a P T U         

3 * * * * * *

11 22 33 33 44 22 44 ;Y a a P T a a T U a a P U        2 *

12 12 ;X a S     

* * * *

12 12 33 12 44 ;Y a a S T a a S U    2 * * * *

13 13 13 22 44 ;X a S a a a S P U    

* * * *

13 13 22 13 44 ;Y a a S P a a S U    
* * *

14 12 24 33 ;X a a a S P T  * *

14 12 24 ;Y a a S P   

2 * * * *

21 21 21 33 44 ;X a P a a a P T U   * * * *

21 21 33 21 44 ;Y a a P T a a P U    

2 * 2 * 2 * * * *

22 11 33 44 11 33 44 ;X a S a T a U a a a S T U        

3 * * * * * *

22 33 44 11 44 11 33 ;Y a a T U a a S U a a S T        * * *

23 13 21 44 ;X a a a S P U    

* *

23 13 21 ;Y a a S P  
* * * *

24 11 24 24 33 ;Y a a S P a a P T     31 0;Y  32 0;X  32 0;Y   

2 * 2 * 2 * * * * * * *

33 11 22 44 11 22 44 12 21 44 ;X a S a P a U a a a S P U a a a S P U         

3 * * * * * * * *

33 22 44 11 44 11 22 12 21 ;Y a a P U a a S U a a S P a a S P           

34 0;X  34 0;Y  41 0;X  41 0;Y  42 0;X  42 0;Y  43 0;X  43 0;Y   

2 * 2 * 2 * * * * * * *

44 11 22 33 11 22 33 12 21 33 ;X a S a P a T a a a S P T a a a S P T         

3 * * * * * * * *

44 22 33 11 33 11 22 12 21 ;Y a a P T a a S T a a S P a a S P           

Thus (4.23) becomes  

   

   1

2 2 2 2

1 11 11 2 12 12
2

2 2 2 2 2 2

3 13 13 4 14 14

1 1
;

2 ( ) ( )
u

X Y X Y
d

R I X Y X Y

 
 

    





        
        

  
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   

   2

2 2 2 2

1 21 21 2 22 22
2

2 2 2 2 2 2

3 23 23 4 24 24

1 1
;

2 ( ) ( )
u

X Y X Y
d

R I X Y X Y

 
 

    





        
        



 

   

   3

2 2 2 2

1 31 31 2 32 32
2

2 2 2 2 2 2

3 33 33 4 34 34

1 1
;

2 ( ) ( )
u

X Y X Y
d

R I X Y X Y

 
 

    





        
        

  

    

   

   4

2 2 2 2

1 41 41 2 42 42
2

2 2 2 2 2 2

3 43 43 4 44 44

1 1

2 ( ) ( )
u

X Y X Y
d

R I X Y X Y

 
 

    





        
        

                                                                                                                                            

                                                                                                                                            (4.24) 

If we want know the behaviour of the system (2.1)-(2.4) with either 1 0   or 2 0   or 3 0   or 

4 0  , then the variances are : 

If 1 2 3 0     , then   
 

1

2 2

14 142 4

2 2
;

2 ( ) ( )
u

X Y
d

R I


 

  









 

2

2 2

24 242 4

2 2
;

2 ( ) ( )
u

X Y
d

R I


 

  








  

                                        
 

3

2 2

34 342 4

2 2
0;

2 ( ) ( )
u

X Y
d

R I


 

  






 

   
 

4

2 2

44 442 4

2 22 ( ) ( )
u

X Y
d

R I


 

  








 .  

If  1 2 4 0     , then  
 

1

2 2

13 132 3

2 2
;

2 ( ) ( )
u

X Y
d

R I


 

  








  
 

2

2 2

23 232 3

2 2
;

2 ( ) ( )
u

X Y
d

R I


 

  








  

                                   
 

3

2 2

33 332 3

2 2
;

2 ( ) ( )
u

X Y
d

R I


 

  








  
 

4

2 2

43 432 3

2 2
0

2 ( ) ( )
u

X Y
d

R I


 

  






 

 . 

If 1 3 4 0     , then  
 

1

2 2

12 122 2

2 2
;

2 ( ) ( )
u

X Y
d

R I


 

  








  
 

2

2 2

22 222 2

2 2
;

2 ( ) ( )
u

X Y
d

R I


 

  








  

                       
 

3

2 2

32 322 2

2 2
0;

2 ( ) ( )
u

X Y
d

R I


 

  






 

  
 

4

2 2

42 422 2

2 2
0

2 ( ) ( )
u

X Y
d

R I


 

  






 

 . 

If 2 3 4 0     , then 
 

1

2 2

11 112 1

2 2
;

2 ( ) ( )
u

X Y
d

R I


 

  








  
 

2

2 2

21 212 1

2 2
;

2 ( ) ( )
u

X Y
d

R I


 

  








  

       
 
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V. PHYSICAL SIGNIFICANCE 

Analytical evaluation of the integrals in (4.24) is difficult, but it can be evaluated numerically for a 

different set of values of parameters. The four variances in (4.24) represent the mean square 

fluctuations of the populations. These are fluctuations of the population from the mean values of the 

population. When the variances are less, we can say that the system is stable whereas when the 

variances are more, the system is unstable. In the computer simulation we can identify the parametric 

domain in which the system has stable equilibrium where population variances are small and also the 

parametric space in which the system has unstable equilibrium where the population variances are 

large. 
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VI. COMPUTER SIMULATION    

For substantiation of our earlier discussed analytical results, we here would like to present some 

numerical replications with the help of MATLAB 7.3 software package. 

Example (6.1):  

1 11 12 13 1 1 2 22 24 2

2 3 33 4 44

3; 0.01; 0.45; 0.08; 0.2; 10, 2; 0.5; 0.3; 0.1

10; 1.2; 0.2; 1.5; 0.5

a a a a q E a a a q

E a a a a

         

      

 Figure 6.1(a)                                                Figure 6.2 (b) 

Figures 6.1(a) and 6.2 (b) show that the variation of population against time initially with                    

20; 15; 25; 30x y z w    and 20; 30; 40; 50x y z w    respectively. 

Example (6.2): 

 

1 11 12 13 1 1 2 22 24

2 2 3 33 4 44

3.5; 0.1; 0.5; 0.08; 0.2; 10; 2.6; 0.5; 0.32

0.1; 10; 1.2; 0.2; 1.5; 0.5

a a a a q E a a a

q E a a a a

        

     
 

 

 
Figure 6.2 (a)                                                     Figure 6.2 (b) 

Figures 6.2(a) and 6.2(b) show that the variation of population against time initially with                    

20; 15; 25; 30x y z w     and 10; 20; 30; 40x y z w    respectively. 

VII. CONCLUSION 

In this paper, a model of a distinctive four species syn-ecosystem with stochastic term was invented. 

At first we have discussed the model without the stochastic term and examined the survival of 

equilibrium points as well as the local stability by utilizing Routh-Hurwitz criteria and the global 

stability using Lyapunov function. We found the bionomic equilibrium subjected to economic 

constraints. Later we added the stochastic term in the model and investigated the effect of 

environmental fluctuations around the positive equilibrium due to additive white noise. The 

population variances are computed and analyzed for stability using Matlab.  

The analytical results and numerical simulation of deterministic four species system model suggest 

that the deterministic system is stable. The stable nature of the system is revealed in figures 6.1(a) & 

6.1(b). Further for stochastic system, population variances have a great role to analyze the stability of 

the system. The conclusion is that the noise on the equation results in immense variances of 
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oscillations around the equilibrium point which propose that our system is periodic with respect to a 

noisy atmosphere. Numerical replications reveal that the trajectories of the system oscillate arbitrarily 

with remarkable variance of amplitudes with the increasing value of the strength of noises initially but 

ultimately fluctuating which are viewed in figures 6.2(a) & 6.2(b). Hence we conclude that inclusion 

of stochastic perturbation create a significant change in intensity of the considered dynamical scheme 

due to change of responsive parameters which causes large environmental fluctuations.  

VIII. FUTURE SCOPE 

Following the same notation, we can incorporate time delay in the beneficial term due to predation of 

the predator population density equation as follows:  

   2

2 22 21 24 2 2 2 2 ( )
dy

a y a y a x t y t a yw q E y t
dt

            

It is very important to analyze the dynamical features of the model with time delay and to get an 

insight on the control of stability in the presence of time delay. The time delay analysis may produce 

interesting results that the increased time delay can increase the tendency for oscillatory behaviour 

and Hopf-bifurcation results. 
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